導航:首頁 > 源碼編譯 > 決策樹演算法cart

決策樹演算法cart

發布時間:2023-05-16 09:21:39

⑴ 決策樹演算法原理

決策樹是通過一系列規則對數據進行分類的過程。它提供一種在什麼條件下會得到什麼值的類似規則的方法。決策樹分為分類樹和回歸樹兩種,分類樹對離散變數做決策樹,回歸樹對連續變數做決策樹。

如果不考慮效率等,那麼樣本所有特徵的判斷級聯起來終會將某一個樣本分到一個類終止塊上。實際上,樣本所有特徵中有一些特徵在分類時起到決定性作用,決策樹的構造過程就是找到這些具有決定性作用的特徵,根據其決定性程度來構造一個倒立的樹--決定性作用最大的那個特徵作為根節點,然後遞歸找到各分支下子數據集中次大的決定性特徵,直至子數據集中所有數據都屬於同一類。所以,構造決策樹的過程本質上就是根據數據特徵將數據集分類的遞歸過程,我們需要解決的第一個問題就是,當前數據集上哪個特徵在劃分數據分類時起決定性作用。

一棵決策樹的生成過程主要分為以下3個部分:

特徵選擇:特徵選擇是指從訓練數據中眾多的特徵中選擇一個特徵作為當前節點的分裂標准,如何選擇特徵有著很多不同量化評估標准標准,從而衍生出不同的決策樹演算法。

決策樹生成: 根據選擇的特徵評估標准,從上至下遞歸地生成子節點,直到數據集不可分則停止決策樹停止生長。 樹結構來說,遞歸結構是最容易理解的方式。

剪枝:決策樹容易過擬合,一般來需要剪枝,縮小樹結構規模、緩解過擬合。剪枝技術有預剪枝和後剪枝兩種。

劃分數據集的最大原則是:使無序的數據變的有序。如果一個訓練數據中有20個特徵,那麼選取哪個做劃分依據?這就必須採用量化的方法來判斷,量化劃分方法有多重,其中一項就是「資訊理論度量信息分類」。基於資訊理論的決策樹演算法有ID3、CART和C4.5等演算法,其中C4.5和CART兩種演算法從ID3演算法中衍生而來。

CART和C4.5支持數據特徵為連續分布時的處理,主要通過使用二元切分來處理連續型變數,即求一個特定的值-分裂值:特徵值大於分裂值就走左子樹,或者就走右子樹。這個分裂值的選取的原則是使得劃分後的子樹中的「混亂程度」降低,具體到C4.5和CART演算法則有不同的定義方式。

ID3演算法由Ross Quinlan發明,建立在「奧卡姆剃刀」的基礎上:越是小型的決策樹越優於大的決策樹(be simple簡單理論)。ID3演算法中根據資訊理論的信息增益評估和選擇特徵,每次選擇信息增益最大的特徵做判斷模塊。ID3演算法可用於劃分標稱型數據集,沒有剪枝的過程,為了去除過度數據匹配的問題,可通過裁剪合並相鄰的無法產生大量信息增益的葉子節點(例如設置信息增益閥值)。使用信息增益的話其實是有一個缺點,那就是它偏向於具有大量值的屬性--就是說在訓練集中,某個屬性所取的不同值的個數越多,那麼越有可能拿它來作為分裂屬性,而這樣做有時候是沒有意義的,另外ID3不能處理連續分布的數據特徵,於是就有了C4.5演算法。CART演算法也支持連續分布的數據特徵。

C4.5是ID3的一個改進演算法,繼承了ID3演算法的優點。C4.5演算法用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足在樹構造過程中進行剪枝;能夠完成對連續屬性的離散化處理;能夠對不完整數據進行處理。C4.5演算法產生的分類規則易於理解、准確率較高;但效率低,因樹構造過程中,需要對數據集進行多次的順序掃描和排序。也是因為必須多次數據集掃描,C4.5隻適合於能夠駐留於內存的數據集。

CART演算法的全稱是Classification And Regression Tree,採用的是Gini指數(選Gini指數最小的特徵s)作為分裂標准,同時它也是包含後剪枝操作。ID3演算法和C4.5演算法雖然在對訓練樣本集的學習中可以盡可能多地挖掘信息,但其生成的決策樹分支較大,規模較大。為了簡化決策樹的規模,提高生成決策樹的效率,就出現了根據GINI系數來選擇測試屬性的決策樹演算法CART。

決策樹演算法的優點:

(1)便於理解和解釋,樹的結構可以可視化出來

(2)基本不需要預處理,不需要提前歸一化,處理缺失值

(3)使用決策樹預測的代價是O(log2m),m為樣本數

(4)能夠處理數值型數據和分類數據

(5)可以處理多維度輸出的分類問題

(6)可以通過數值統計測試來驗證該模型,這使解釋驗證該模型的可靠性成為可能

(7)即使該模型假設的結果與真實模型所提供的數據有些違反,其表現依舊良好

決策樹演算法的缺點:

(1)決策樹模型容易產生一個過於復雜的模型,這樣的模型對數據的泛化性能會很差。這就是所謂的過擬合.一些策略像剪枝、設置葉節點所需的最小樣本數或設置數的最大深度是避免出現該問題最為有效地方法。

(2)決策樹可能是不穩定的,因為數據中的微小變化可能會導致完全不同的樹生成。這個問題可以通過決策樹的集成來得到緩解。

(3)在多方面性能最優和簡單化概念的要求下,學習一棵最優決策樹通常是一個NP難問題。因此,實際的決策樹學習演算法是基於啟發式演算法,例如在每個節點進行局部最優決策的貪心演算法。這樣的演算法不能保證返回全局最優決策樹。這個問題可以通過集成學習來訓練多棵決策樹來緩解,這多棵決策樹一般通過對特徵和樣本有放回的隨機采樣來生成。

(4)有些概念很難被決策樹學習到,因為決策樹很難清楚的表述這些概念。例如XOR,奇偶或者復用器的問題。

(5)如果某些類在問題中佔主導地位會使得創建的決策樹有偏差。因此,我們建議在擬合前先對數據集進行平衡。

(1)當數據的特徵維度很高而數據量又很少的時候,這樣的數據在構建決策樹的時候往往會過擬合。所以我們要控制樣本數量和特徵的之間正確的比率;

(2)在構建決策樹之前,可以考慮預先執行降維技術(如PCA,ICA或特徵選擇),以使我們生成的樹更有可能找到具有辨別力的特徵;

(3)在訓練一棵樹的時候,可以先設置max_depth=3來將樹可視化出來,以便我們找到樹是怎樣擬合我們數據的感覺,然後在增加我們樹的深度;

(4)樹每增加一層,填充所需的樣本數量是原來的2倍,比如我們設置了最小葉節點的樣本數量,當我們的樹層數增加一層的時候,所需的樣本數量就會翻倍,所以我們要控制好樹的最大深度,防止過擬合;

(5)使用min_samples_split(節點可以切分時擁有的最小樣本數) 和 min_samples_leaf(最小葉節點數)來控制葉節點的樣本數量。這兩個值設置的很小通常意味著我們的樹過擬合了,而設置的很大意味著我們樹預測的精度又會降低。通常設置min_samples_leaf=5;

(6)當樹的類比不平衡的時候,在訓練之前一定要先平很數據集,防止一些類別大的類主宰了決策樹。可以通過采樣的方法將各個類別的樣本數量到大致相等,或者最好是將每個類的樣本權重之和(sample_weight)規范化為相同的值。另請注意,基於權重的預剪枝標准(如min_weight_fraction_leaf)將比不知道樣本權重的標准(如min_samples_leaf)更少偏向主導類別。

(7)如果樣本是帶權重的,使用基於權重的預剪枝標准將更簡單的去優化樹結構,如mn_weight_fraction_leaf,這確保了葉節點至少包含了樣本權值總體總和的一小部分;

(8)在sklearn中所有決策樹使用的數據都是np.float32類型的內部數組。如果訓練數據不是這種格式,則將復制數據集,這樣會浪費計算機資源。

(9)如果輸入矩陣X非常稀疏,建議在調用fit函數和稀疏csr_matrix之前轉換為稀疏csc_matrix,然後再調用predict。 當特徵在大多數樣本中具有零值時,與密集矩陣相比,稀疏矩陣輸入的訓練時間可以快幾個數量級。

⑵ 決策樹演算法

決策樹演算法的演算法理論和應用場景

演算法理論:

我了解的決策樹演算法,主要有三種,最早期的ID3,再到後來的C4.5和CART這三種演算法。

這三種演算法的大致框架近似。

決策樹的學習過程

1.特徵選擇

在訓練數據中 眾多X中選擇一個特徵作為當前節點分裂的標准。如何選擇特徵有著很多不同量化評估標准,從而衍生出不同的決策樹演算法。

2.決策樹生成

根據選擇的特徵評估標准,從上至下遞歸生成子節點,直到數據集不可分或者最小節點滿足閾值,此時決策樹停止生長。

3.剪枝

決策樹極其容易過擬合,一般需要通過剪枝,縮小樹結構規模、緩解過擬合。剪枝技術有前剪枝和後剪枝兩種。

有些演算法用剪枝過程,有些沒有,如ID3。

預剪枝:對每個結點劃分前先進行估計,若當前結點的劃分不能帶來決策樹的泛化性能的提升,則停止劃分,並標記為葉結點。

後剪枝:現從訓練集生成一棵完整的決策樹,然後自底向上對非葉子結點進行考察,若該結點對應的子樹用葉結點能帶來決策樹泛化性能的提升,則將該子樹替換為葉結點。

但不管是預剪枝還是後剪枝都是用驗證集的數據進行評估。

ID3演算法是最早成型的決策樹演算法。ID3的演算法核心是在決策樹各個節點上應用信息增益准則來選擇特徵,遞歸構建決策樹。缺點是,在選擇分裂變數時容易選擇分類多的特徵,如ID值【值越多、分叉越多,子節點的不純度就越小,信息增益就越大】。

ID3之所以無法 處理缺失值、無法處理連續值、不剪紙等情況,主要是當時的重點並不是這些。

C4.5演算法與ID3近似,只是分裂標准從 信息增益 轉變成  信息增益率。可以處理連續值,含剪枝,可以處理缺失值,這里的做法多是 概率權重。

CART:1.可以處理連續值 2.可以進行缺失值處理 3.支持剪枝 4.可以分類可以回歸。

缺失值的處理是 作為一個單獨的類別進行分類。

建立CART樹

我們的演算法從根節點開始,用訓練集遞歸的建立CART樹。

1) 對於當前節點的數據集為D,如果樣本個數小於閾值或者沒有特徵,則返回決策子樹,當前節點停止遞歸。

2) 計算樣本集D的基尼系數, 如果基尼系數小於閾值 (說明已經很純了!!不需要再分了!!),則返回決策樹子樹,當前節點停止遞歸。

3) 計算當前節點現有的各個特徵的各個特徵值對數據集D的基尼系數。

4) 在計算出來的各個特徵的各個特徵值對數據集D的基尼系數中,選擇 基尼系數最小的特徵A和對應的特徵值a。根據這個最優特徵和最優特徵值,把數據集劃分成兩部分D1和D2,同時建立當前節點的左右節點,做節點的數據集D為D1,右節點的數據集D為D2。 (註:注意是二叉樹,故這里的D1和D2是有集合關系的,D2=D-D1)

5) 對左右的子節點遞歸的調用1-4步,生成決策樹。

CART採用的辦法是後剪枝法,即先生成決策樹,然後產生所有可能的剪枝後的CART樹,然後使用交叉驗證來檢驗各種剪枝的效果,選擇泛化能力最好的剪枝策略。

應用場景

比如欺詐問題中,通過決策樹演算法簡單分類,默認是CART的分類樹,默認不剪枝。然後在出圖後,自行選擇合適的葉節點進行拒絕操作。

這個不剪枝是因為欺詐問題的特殊性,欺詐問題一般而言較少,如數據的萬幾水平,即正樣本少,而整個欺詐問題需要解決的速度較快。此時只能根據業務要求,迅速針對已有的正樣本情況,在控制准確率的前提下,盡可能提高召回率。這種情況下,可以使用決策樹來簡單應用,這個可以替代原本手工選擇特徵及特徵閾值的情況。

⑶ 決策樹ID3,C4.5,CART演算法中某一屬性分類後,是否能運用該屬性繼續分類

決策樹主要有ID3,C4.5,CART等形式。ID3選取信息增益的屬性遞歸進行分類,C4.5改進為使用信息增益率來選取分類屬性。CART是Classfication and Regression Tree的縮寫。表明CART不僅可以進行分類,也可以進行回歸。其中使用基尼系數選取分類屬性。以下主要介紹ID3和CART演算法。
ID3演算法:
信息熵: H(X)=-sigma(對每一個x)(plogp) H(Y|X)=sigma(對每一個x)(pH(Y|X=xi))
信息增益:H(D)-H(D|X) H(D)是整個數據集的熵
信息增益率:(H(D)-H(D|X))/H(X)
演算法流程:(1)對每一個屬性計算信息增益,若信息增益小於閾值,則將該支置為葉節點,選擇其中個數最多的類標簽作為該類的類標簽。否則,選擇其中最大的作為分類屬 性。
(2)若各個分支中都只含有同一類數據,則將這支置為葉子節點。
否則 繼續進行(1)。
CART演算法:
基尼系數:Gini(p)=sigma(每一個類)p(1-p)
回歸樹:屬性值為連續實數。將整個輸入空間劃分為m塊,每一塊以其平均值作為輸出。f(x)=sigma(每一塊)Cm*I(x屬於Rm)
回歸樹生成:(1)選取切分變數和切分點,將輸入空間分為兩份。
(2)每一份分別進行第一步,直到滿足停止條件。
切分變數和切分點選取:對於每一個變數進行遍歷,從中選擇切分點。選擇一個切分點滿足分類均方誤差最小。然後在選出所有變數中最小分類誤差最小的變數作為切分 變數。
分類樹:屬性值為離散值。
分類樹生成:(1)根據每一個屬性的每一個取值,是否取該值將樣本分成兩類,計算基尼系數。選擇基尼系數最小的特徵和屬性值,將樣本分成兩份。
(2)遞歸調用(1)直到無法分割。完成CART樹生成。

決策樹剪枝策略:
預剪枝(樹提前停止生長)和後剪枝(完全生成以後減去一些子樹提高預測准確率)
降低錯誤率剪枝:自下而上對每一個內部節點比較減去以其為葉節點和子樹的准確率。如果減去准確率提高,則減去,依次類推知道准確率不在提高。
代價復雜度剪枝:從原始決策樹T0開始生成一個子樹序列{T0、T1、T2、...、Tn},其中Ti+1是從Ti總產生,Tn為根節點。每次均從Ti中 減去具有最小誤差增長率的子樹。然後通過 交叉驗證比較序列中各子樹的效果選擇最優決策樹。

⑷ 決策樹的訓練復雜度

並不是很復雜。

決策樹模型因為其特徵預處理簡單、易於集成學習、良好的擬合能力及解釋性,是應用最廣泛的機器學習模型之一。

決策樹演算法在決策領域有著廣泛的應用,比如個人決策、公司管理決策等。演算法邏輯模型以「樹形結構」呈現,因此它比較容易理解,並不是很復雜,我們可以清楚地掌握分類過程中的每一個細節。

控制決策樹的復雜度:

若所有葉結點都是純的,模型過於復雜,訓練集擬合度過高,出現過擬合。

兩種方法防治過擬合:

預剪枝:限制樹的生長到某一次停止。限制樹的最大深度、葉結點的最大數目…

後剪枝:生成純樹以後把信息少的結點刪掉。

常見決策樹分類演算法

1、CLS演算法

最原始的決策樹分類演算法,基本流程是,從一棵空數出發,不斷地從決策表選取屬性加入數的生長過程中,直到決策樹可以滿足分類要求為止。CLS演算法存在的主要問題是在新增屬性選取時有很大的隨機性。

2、ID3演算法

對CLS演算法的最大改進是摒棄了屬性選擇的隨機性,利用信息熵的下降速度作為屬性選擇的度量。ID3是一種基於信息熵的決策樹分類學習演算法,以信息增益和信息熵,作為對象分類的衡量標准。

ID3演算法結構簡單、學習能力強、分類速度快適合大規模數據分類。但同時由於信息增益的不穩定性,容易傾向於眾數屬性導致過度擬合,演算法抗干擾能力差。

3、C4.5演算法

基於ID3演算法的改進,主要包括:

使用信息增益率替換了信息增益下降度作為屬性選擇的標准。

在決策樹構造的同時進行剪枝操作。

避免了樹的過度擬合情況。

可以對不完整屬性和連續型數據進行處理。

使用k交叉驗證降低了計算復雜度。

針對數據構成形式,提升了演算法的普適性。

4、SLIQ演算法

該演算法具有高可擴展性和高可伸縮性特質,適合對大型數據集進行處理。

5、CART演算法

CART是一種基於二分遞歸分割技術的演算法。該演算法是將當前的樣本集,分為兩個樣本子集,這樣做就使得每一個非葉子節點最多隻有兩個分支。因此,使用CART演算法所建立的決策樹是一棵二叉樹,樹的結構簡單,與其它決策樹演算法相比,由該演算法生成的決策樹模型分類規則較少。

python中的sklearn中決策樹使用的是哪一種演算法

sklearn中決策樹分為DecisionTreeClassifier和DecisionTreeRegressor,所以用的演算法是CART演算法,也就是分類與回歸樹演算法(classification and regression tree,CART),劃分標准默認使用的也是Gini,ID3和C4.5用的是信息熵,為何要設置成ID3或者C4.5呢

⑹ 決策樹CART演算法優點和缺點

CART的全稱是分類和回歸樹,既可以做分類演算法,也可以做回歸。
決策樹的優缺點:
優點:

1.可以生成可以理解的規則。
2.計算量相對來說不是很大。
3.可以處理連續和種類欄位。
4.決策樹可以清晰的顯示哪些欄位比較重要
缺點:

1. 對連續性的欄位比較難預測。
2.對有時間順序的數據,需要很多預處理的工作。
3.當類別太多時,錯誤可能就會增加的比較快。
4.一般的演算法分類的時候,只是根據一個欄位來分類。

⑺ 決策樹演算法 CART和C4.5決策樹有什麼區別各用於什麼領域

1、C4.5演算法是在ID3演算法的基礎上採用信息增益率的方法選擇測試屬性。CART演算法採用一種二分遞歸分割的技術,與基於信息熵的演算法不同,CART演算法對每次樣本集的劃分計算GINI系數,GINI系數,GINI系數越小則劃分越合理。
2、決策樹演算法是一種逼近離散函數值的方法。它是一種典型的分類方法,首先對數據進行處理,利用歸納演算法生成可讀的規則和決策樹,然後使用決策對新數據進行分析。本質上決策樹是通過一系列規則對數據進行分類的過程。
3、決策樹演算法構造決策樹來發現數據中蘊涵的分類規則.如何構造精度高、規模小的決策樹是決策樹演算法的核心內容。決策樹構造可以分兩步進行。第一步,決策樹的生成:由訓練樣本集生成決策樹的過程。一般情況下,訓練樣本數據集是根據實際需要有歷史的、有一定綜合程度的,用於數據分析處理的數據集。第二步,決策樹的剪技:決策樹的剪枝是對上一階段生成的決策樹進行檢驗、校正和修下的過程,主要是用新的樣本數據集(稱為測試數據集)中的數據校驗決策樹生成過程中產生的初步規則,將那些影響預衡准確性的分枝剪除。

⑻ 決策樹演算法之隨機森林

在 CART 分類回歸樹 的基礎之上,我們可以很容易的掌握隨機森林演算法,它們之間的區別在於,CART 決策樹較容易過擬合,而隨機森林可以在一定程度上解決該問題。

隨機森林的主要思想是:使用隨機性產生出一系列簡單的決策樹,並組合它們的預測結果為最終的結果,可謂三個臭皮匠賽過一個諸葛亮,下面我們就來具體了解一下。

產生隨機森林的步驟大致為三步

在第 1 步,它是一個可放回抽樣,即所產生的樣本是允許重復的,這種抽樣又被稱為 Bootstrap,例如我們有以下 mmy 數據

在做完 Bootstrap 之後,可能的樣本數據如下

可見,樣本數據中,第 3 條和第 4 條樣本是一樣的,都對應的是原始數據中的第 4 條。

接下來,就是要使用上面的樣本數據來產生決策樹了,產生決策樹的方法和 CART 基本一致,唯一的不同地方在於,節點的構建不是來自於全部的候選特徵,而是先從中隨機的選擇 n 個特徵,在這 n 個特徵中找出一個作為最佳節點。

舉個例子,假設 n = 2,且我們隨機選擇了「血液循環正常」和「血管堵塞」這兩個特徵來產生根節點,如下:

我們將在上述兩個特徵中選擇一個合適的特徵作為根節點,假設在計算完 Gini 不純度之後,「血液循環正常」這個特徵勝出,那麼我們的根節點便是「血液循環正常」,如下圖所示

接下來我們還需要構建根節點下面的節點,下一個節點將會在剩下的「胸口疼痛」、「血管堵塞」和「體重」三個特徵中產生,但我們依然不會計算所有這 3 個特徵的 Gini 不純度,而是從中隨機選擇 2 個特徵,取這 2 個特徵中的 Gini 不純度較低者作為節點。

例如我們隨機選到了「胸口疼痛」和「體重」這兩列,如下:

假設此時「體重」的 Gini 不純度更低,那麼第 2 個節點便是「體重」,如下圖:

繼續下去,我們便產生了一棵決策樹。

隨機森林是多棵決策樹,在產生完一棵決策樹後,接著會循環執行上述過程:Bootstrap 出訓練樣本,訓練決策樹,直到樹的數量達到設置值——通常為幾百棵樹。

現在我們產生了幾百棵樹的隨機森林,當我們要預測一條數據時,該怎麼做呢?我們會聚合這些樹的結果,選擇預測結果最多的那個分類作為最終的預測結果。

例如我們現在有一條數據:

該條數據被所有樹預測的結果如下:

上述結果聚合後為:

取最多的那項為最終的預測結果,即 Yes——該病人被診斷為患有心臟病。

以上,隨機森林的兩個過程: B ootstrap 和 Agg regate 又被稱為 Bagging

本文我們一起學習了隨機森林的演算法,和 CART 決策樹比起來,它主要被用來解決過擬合問題,其主要的思想為 Bagging,即隨機性有助於增強模型的泛化(Variance) 能力。

參考:

相關文章:

⑼ 數據挖掘-決策樹演算法

決策樹演算法是一種比較簡易的監督學習分類演算法,既然叫做決策樹,那麼首先他是一個樹形結構,簡單寫一下樹形結構(數據結構的時候學過不少了)。

樹狀結構是一個或多個節點的有限集合,在決策樹里,構成比較簡單,有如下幾種元素:

在決策樹中,每個葉子節點都有一個類標簽,非葉子節點包含對屬性的測試條件,用此進行分類。
所以個人理解,決策樹就是 對一些樣本,用樹形結構對樣本的特徵進行分支,分到葉子節點就能得到樣本最終的分類,而其中的非葉子節點和分支就是分類的條件,測試和預測分類就可以照著這些條件來走相應的路徑進行分類。

根據這個邏輯,很明顯決策樹的關鍵就是如何找出決策條件和什麼時候算作葉子節點即決策樹終止。

決策樹的核心是為不同類型的特徵提供表示決策條件和對應輸出的方法,特徵類型和劃分方法包括以下幾個:

注意,這些圖中的第二層都是分支,不是葉子節點。

如何合理的對特徵進行劃分,從而找到最優的決策模型呢?在這里需要引入信息熵的概念。

先來看熵的概念:

在數據集中,參考熵的定義,把信息熵描述為樣本中的不純度,熵越高,不純度越高,數據越混亂(越難區分分類)。

例如:要給(0,1)分類,熵是0,因為能明顯分類,而均衡分布的(0.5,0.5)熵比較高,因為難以劃分。

信息熵的計算公式為:
其中 代表信息熵。 是類的個數, 代表在 類時 發生的概率。
另外有一種Gini系數,也可以用來衡量樣本的不純度:
其中 代表Gini系數,一般用於決策樹的 CART演算法

舉個例子:

如果有上述樣本,那麼樣本中可以知道,能被分為0類的有3個,分為1類的也有3個,那麼信息熵為:
Gini系數為:
總共有6個數據,那麼其中0類3個,佔比就是3/6,同理1類。

我們再來計算一個分布比較一下:

信息熵為:
Gini系數為:

很明顯,因為第二個分布中,很明顯這些數偏向了其中一類,所以 純度更高 ,相對的信息熵和Gini系數較低。

有了上述的概念,很明顯如果我們有一組數據要進行分類,最快的建立決策樹的途徑就是讓其在每一層都讓這個樣本純度最大化,那麼就要引入信息增益的概念。

所謂增益,就是做了一次決策之後,樣本的純度提升了多少(不純度降低了多少),也就是比較決策之前的樣本不純度和決策之後的樣本不純度,差越大,效果越好。
讓信息熵降低,每一層降低的越快越好。
度量這個信息熵差的方法如下:
其中 代表的就是信息熵(或者其他可以度量不純度的系數)的差, 是樣本(parent是決策之前, 是決策之後)的信息熵(或者其他可以度量不純度的系數), 為特徵值的個數, 是原樣本的記錄總數, 是與決策後的樣本相關聯的記錄個數。

當選擇信息熵作為樣本的不純度度量時,Δ就叫做信息增益

我們可以遍歷每一個特徵,看就哪個特徵決策時,產生的信息增益最大,就把他作為當前決策節點,之後在下一層繼續這個過程。

舉個例子:

如果我們的目標是判斷什麼情況下,銷量會比較高(受天氣,周末,促銷三個因素影響),根據上述的信息增益求法,我們首先應該找到根據哪個特徵來決策,以信息熵為例:

首先肯定是要求 ,也就是銷量這個特徵的信息熵:

接下來,就分別看三個特徵關於銷量的信息熵,先看天氣,天氣分為好和壞兩種,其中天氣為好的條件下,銷量為高的有11條,低的有6條;天氣壞時,銷量為高的有7條,銷量為低的有10條,並且天氣好的總共17條,天氣壞的總共17條。

分別計算天氣好和天氣壞時的信息熵,天氣好時:

根據公式 ,可以知道,N是34,而天氣特徵有2個值,則k=2,第一個值有17條可以關聯到決策後的節點,第二個值也是17條,則能得出計算:

再計算周末這個特徵,也只有兩個特徵值,一個是,一個否,其中是有14條,否有20條;周末為是的中有11條銷量是高,3條銷量低,以此類推有:


信息增益為:

另外可以得到是否有促銷的信息增益為0.127268。

可以看出,以周末為決策,可以得到最大的信息增益,因此根節點就可以用周末這個特徵進行分支:

注意再接下來一層的原樣本集,不是34個而是周末為「是」和「否」分別計算,為是的是14個,否的是20個。
這樣一層一層往下遞歸,直到判斷節點中的樣本是否都屬於一類,或者都有同一個特徵值,此時就不繼續往下分了,也就生成了葉子節點。

上述模型的決策樹分配如下:

需要注意的是,特徵是否出現需要在分支當中看,並不是整體互斥的,周末生成的兩個分支,一個需要用促銷來決策,一個需要用天氣,並不代表再接下來就沒有特徵可以分了,而是在促銷決策層下面可以再分天氣,另外一遍天氣決策下面可以再分促銷。

決策樹的模型比較容易解釋,看這個樹形圖就能很容易的說出分類的條件。

我們知道屬性有二元屬性、標稱屬性、序數屬性和連續屬性,其中二元、標稱和序數都是類似的,因為是離散的屬性,按照上述方式進行信息增益計算即可,而連續屬性與這三個不同。

對於連續的屬性,為了降低其時間復雜度,我們可以先將屬性內部排序,之後取相鄰節點的均值作為決策值,依次取每兩個相鄰的屬性值的均值,之後比較他們的不純度度量。

需要注意的是,連續屬性可能在決策樹中出現多次,而不是像離散的屬性一樣在一個分支中出現一次就不會再出現了。

用信息熵或者Gini系數等不純度度量有一個缺點,就是會傾向於將多分支的屬性優先分類——而往往這種屬性並不是特徵。

例如上面例子中的第一行序號,有34個不同的值,那麼信息熵一定很高,但是實際上它並沒有任何意義,因此我們需要規避這種情況,如何規避呢,有兩種方式:

公式如下:

其中k為劃分的總數,如果每個屬性值具有相同的記錄數,則 ,劃分信息等於 ,那麼如果某個屬性產生了大量劃分,則劃分信息很大,信息增益率低,就能規避這種情況了。

為了防止過擬合現象,往往會對決策樹做優化,一般是通過剪枝的方式,剪枝又分為預剪枝和後剪枝。

在構建決策樹時,設定各種各樣的條件如葉子節點的樣本數不大於多少就停止分支,樹的最大深度等,讓決策樹的層級變少以防止過擬合。
也就是在生成決策樹之前,設定了決策樹的條件。

後剪枝就是在最大決策樹生成之後,進行剪枝,按照自底向上的方式進行修剪,修剪的規則是,評估葉子節點和其父節點的代價函數,如果父節點的代價函數比較小,則去掉這個葉子節點。
這里引入的代價函數公式是:
其中 代表的是葉子節點中樣本個數, 代表的是該葉子節點上的不純度度量,把每個葉子節點的 加起來,和父節點的 比較,之後進行剪枝即可。

⑽ 決策樹之CART演算法

一、基本概念

1.cart使用基尼系數作為劃分標准。基尼系數越小,則不純度越低,區分的越徹底。

2.假設有k個類別,第k個類別的概率為 ,則基尼系數表達式為:

Gini(p)= (1- )=1-

3.對於樣本D,如果根據特徵A 的值把樣本分為D1,D2兩部分,則在特徵A條件下,D的基尼系數

Gini(D,A)= Gini(D1)+  Gini(D2)

4.CART建立起來的是二叉樹,如果特徵A有A1,A2,A3三個類別,CART會考慮把A分成{A1},{A2 ,A3}兩組,或者是其他兩種情況。由於這次A並沒有完全分開,所以下次還有機會在子節點把A2,A3分開.

5.對於連續值的切分.假如有1 2 3 4 5 那麼cart會有4個切分點 [1.5  2.5  3.5  4.5]

二.實例推導樹的建立過程

1.假設我有以下源數據

序號 天氣 周末 促銷 銷量

1 壞 是 是 高

2 壞 是 是 高

3 壞 是 是 高

4 壞 否 是 高

5 壞 是 是 高

6 壞 否 是 高

7 壞 是 否 高

8 好 是 是 高

9 好 是 否 高

10 好 是 是 高

11 好 是 是 高

12 好 是 是 高

13 好 是 是 高

14 壞 是 是 低

15 好 否 是 高

16 好 否 是 高

17 好 否 是 高

18 好 否 是 高

19 好 否 否 高

20 壞 否 否 低

21 壞 否 是 低

22 壞 否 是 低

23 壞 否 是 低

24 壞 否 否 低

25 壞 是 否 低

26 好 否 是 低

27 好 否 是 低

28 壞 否 否 低

29 壞 否 否 低

30 好 否 否 低

31 壞 是 否 低

32 好 否 是 低

33 好 否 否 低

34 好 否 否 低

該數據集有三個特徵  天氣  周末   促銷

2.為了簡化建立樹的過程,我將忽略基尼系數與樣本個數閥值

2.1  首先計算各個特徵值對數據集的基尼系數,公式見---- 基本概念.3

Gini(D|天氣)=17/34*(1-(11/17)^2-(6/17)^2)+17/34*(1-(7/17)^2-(10/17)^2)=0.4706

Gini(D|周末)=20/34*(1-(7/20)^2-(13/20)^2)+14/34*(1-(11/14)^2-(3/14)^2)=0.4063

Gini(D|促銷)=12/34*(1-(9/12)^2-(3/12)^2)+22/34*(1-(7/22)^2-(15/22)^2)=0.4131

周末的基尼系數最小,這也符合我們的一般認識

2.2  第一個分列特徵選擇周末。此時數據集按照是否周末分成兩個。

Gini(周末|天氣)=0.2679

Gini(周末|促銷)=0.2714

Gini(非周末|天氣)=0.3505

Gini(非周末|促銷)=0.3875

此時,周末應該以天氣作為劃分,非周末也是以天氣作為劃分,下面放個圖

三、CART樹對於連續特徵的處理

假如特徵A為連續型變數,則把特徵A按照從小到大進行排序,取相鄰兩點的平均值為切分點,計算基尼系數。則基尼系數最小的點為切分點,大於切分點的為一類,小於切分點的為另一類。舉例:特徵A的值為 1,2,3,4,5,6     目標變數是高、低、高、低、高、低。則1.5處的基尼系數為  (1/6)*(1-1^2)+(5/6)*(1-(2/5)^2-(3/5)^2)=0.4                                                2.5處的基尼系數為  (2/6)*(1-(1/2)^2-(1/2)^2)+(4/6)*(1-(2/4)^2-(2/4)^2)=0.5                              3.5處的基尼系數為   (3/6)*(1-(1/3)^2-(2/3)^2)+(3/6)*(1-(1/3)^2-(2/3)^2)=0.44                          4.5處的基尼系數為   (4/6)*(1-(2/4)^2-(2/4)^2)+(2/6)*(1-(1/2)^2-(1/2)^2)=0.5                            5.5處的基尼系數為    (5/6)*(1-(2/5)^2-(3/5)^2)+(1/6)*(1-1^2)=0.4                                          結論:  1.5和5.5處的基尼系數最小,可以把1分為一類,2-6分為另一類。或者6分為一類,1-5另一類。

四、關於回歸樹

1.回歸樹和分類樹的區別在於輸出值類型不同。分類樹輸出的是離散值,回歸樹輸出的是連續值。

2.和分類樹使用基尼系數不同,回歸樹使用和均方差來度量最佳分隔點。假設有1 2 3 4 5 6 六個數。假設3.5處把數據分開最合適,那麼(1-2)^2+(2-2)^2+(3-2)^2+(4-5)^2+(5-5)^2+(6-5)^2在所有分割點中取得最小值。2,5為各自數據段的平均值。

3.回歸樹採用最後葉子的平均值或者中值作為輸出結果

閱讀全文

與決策樹演算法cart相關的資料

熱點內容
軟通動力程序員節2021 瀏覽:845
安卓系統如何卸載安裝包 瀏覽:868
簡訊刪除助手文件夾 瀏覽:688
java辦公自動化 瀏覽:340
php中超鏈接 瀏覽:253
linux默認路由設置 瀏覽:36
linux如何掛載iso 瀏覽:432
vs程序換文件夾後不能編譯 瀏覽:557
安卓源碼編譯輸入腳本沒反應 瀏覽:47
phpmysql自增 瀏覽:167
把ppt保存為pdf 瀏覽:533
汽車密封件加密配件 瀏覽:887
黑馬程序員15天基礎班 瀏覽:560
java調整格式 瀏覽:521
香港雲伺服器租用價 瀏覽:78
linuxsublime3 瀏覽:560
imac混合硬碟命令 瀏覽:278
沈陽用什麼app租房車 瀏覽:857
00後高中生都用什麼app 瀏覽:239
戴爾塔式伺服器怎麼打開獨立顯卡 瀏覽:808