導航:首頁 > 源碼編譯 > 簡單排序及順序查找演算法及實現

簡單排序及順序查找演算法及實現

發布時間:2023-05-18 21:14:29

① 各種排序演算法實現和比較

1、 堆排序定義
n個關鍵字序列Kl,K2,…,Kn稱為堆,當且僅當該序列滿足如下性質(簡稱為堆性質):
(1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ )
若將此序列所存儲的向量R[1..n]看做是一棵完全二叉樹的存儲結構,則堆實質上是滿足如下性質的完全二叉樹:樹中任一非葉結點的關鍵字均不大於(或不小於)其左右孩子(若存在)結點的關鍵字。
關鍵字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分別滿足堆性質(1)和(2),故它們均是堆,其對應的完全二叉樹分別如小根堆示例和大根堆示例所示。
2、大根堆和小根堆
根結點(亦稱為堆頂)的關鍵字是堆里所有結點關鍵字中最小者的堆稱為小根堆。
根結點(亦稱為堆頂)的關鍵字是堆里所有結點關鍵字中最大者,稱為大根堆。
注意:
①堆中任一子樹亦是堆。
②以上討論的堆實際上是二叉堆(Binary Heap),類似地可定義k叉堆。
3、堆排序特點
堆排序(HeapSort)是一樹形選擇排序。
堆排序的特點是:在排序過程中,將R[l..n]看成是一棵完全二叉樹的順序存儲結構,利用完全二叉樹中雙親結點和孩子結點之間的內在關系,在當前無序區中選擇關鍵字最大(或最小)的記錄。
4、堆排序與直接插入排序的區別
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。
5、堆排序
堆排序利用了大根堆(或小根堆)堆頂記錄的關鍵字最大(或最小)這一特徵,使得在當前無序區中選取最大(或最小)關鍵字的記錄變得簡單。
(1)用大根堆排序的基本思想
① 先將初始文件R[1..n]建成一個大根堆,此堆為初始的無序區
② 再將關鍵字最大的記錄R[1](即堆頂)和無序區的最後一個記錄R[n]交換,由此得到新的無序區R[1..n-1]和有序區R[n],且滿足R[1..n-1].keys≤R[n].key
③ 由於交換後新的根R[1]可能違反堆性質,故應將當前無序區R[1..n-1]調整為堆。然後再次將R[1..n-1]中關鍵字最大的記錄R[1]和該區間的最後一個記錄R[n-1]交換,由此得到新的無序區R[1..n-2]和有序區R[n-1..n],且仍滿足關系R[1..n-2].keys≤R[n-1..n].keys,同樣要將R[1..n-2]調整為堆。
……
直到無序區只有一個元素為止。
(2)大根堆排序演算法的基本操作:
① 初始化操作:將R[1..n]構造為初始堆;
② 每一趟排序的基本操作:將當前無序區的堆頂記錄R[1]和該區間的最後一個記錄交換,然後將新的無序區調整為堆(亦稱重建堆)。
注意:
①只需做n-1趟排序,選出較大的n-1個關鍵字即可以使得文件遞增有序。
②用小根堆排序與利用大根堆類似,只不過其排序結果是遞減有序的。堆排序和直接選擇排序相反:在任何時刻,堆排序中無序區總是在有序區之前,且有序區是在原向量的尾部由後往前逐步擴大至整個向量為止。
(3)堆排序的演算法:
void HeapSort(SeqIAst R)
{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元
int i;
BuildHeap(R); //將R[1-n]建成初始堆
for(i=n;i1;i--){ //對當前無序區R[1..i]進行堆排序,共做n-1趟。
R[0]=R[1];R[1]=R[i];R[i]=R[0]; //將堆頂和堆中最後一個記錄交換
Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質
} //endfor
} //HeapSort
(4) BuildHeap和Heapify函數的實現
因為構造初始堆必須使用到調整堆的操作,先討論Heapify的實現。
① Heapify函數思想方法
每趟排序開始前R[l..i]是以R[1]為根的堆,在R[1]與R[i]交換後,新的無序區R[1..i-1]中只有R[1]的值發生了變化,故除R[1]可能違反堆性質外,其餘任何結點為根的子樹均是堆。因此,當被調整區間是R[low..high]時,只須調整以R[low]為根的樹即可。
"篩選法"調整堆
R[low]的左、右子樹(若存在)均已是堆,這兩棵子樹的根R[2low]和R[2low+1]分別是各自子樹中關鍵字最大的結點。若R[low].key不小於這兩個孩子結點的關鍵字,則R[low]未違反堆性質,以R[low]為根的樹已是堆,無須調整;否則必須將R[low]和它的兩個孩子結點中關鍵字較大者進行交換,即R[low]與R[large](R[large].key=max(R[2low].key,R[2low+1].key))交換。交換後又可能使結點R[large]違反堆性質,同樣由於該結點的兩棵子樹(若存在)仍然是堆,故可重復上述的調整過程,對以R[large]為根的樹進行調整。此過程直至當前被調整的結點已滿足堆性質,或者該結點已是葉子為止。上述過程就象過篩子一樣,把較小的關鍵字逐層篩下去,而將較大的關鍵字逐層選上來。因此,有人將此方法稱為"篩選法"。
具體的演算法
②BuildHeap的實現
要將初始文件R[l..n]調整為一個大根堆,就必須將它所對應的完全二叉樹中以每一結點為根的子樹都調整為堆。
顯然只有一個結點的樹是堆,而在完全二叉樹中,所有序號 的結點都是葉子,因此以這些結點為根的子樹均已是堆。這樣,我們只需依次將以序號為 , -1,…,1的結點作為根的子樹都調整為堆即可。
具體演算法。
5、大根堆排序實例
對於關鍵字序列(42,13,24,91,23,16,05,88),在建堆過程中完全二叉樹及其存儲結構的變化情況參見。
6、 演算法分析
堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。
堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。
由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。
堆排序是就地排序,輔助空間為O(1),
它是不穩定的排序方法。

② 快速排序演算法原理與實現

快速排序的基本思想就是從一個數組中任意挑選一個元素(通常來說會選擇最左邊的元素)作為中軸元素,將剩下的元素以中軸元素作為比較的標准,將小於等於中軸元素的放到中軸元素的左邊,將大於中軸元素的放到中軸元素的右邊。

然後以當前中軸元素的位置為界,將左半部分子數組和右半部分子數組看成兩個新的數組,重復上述操作,直到子數組的元素個數小於等於1(因為一個元素的數組必定是有序的)。

以下的代碼中會常常使用交換數組中兩個元素值的Swap方法,其代碼如下

publicstaticvoidSwap(int[] A, inti, intj){

inttmp;

tmp = A[i];

A[i] = A[j];

A[j] = tmp;


(2)簡單排序及順序查找演算法及實現擴展閱讀:

快速排序演算法 的基本思想是:將所要進行排序的數分為左右兩個部分,其中一部分的所有數據都比另外一 部分的數據小,然後將所分得的兩部分數據進行同樣的劃分,重復執行以上的劃分操作,直 到所有要進行排序的數據變為有序為止。

定義兩個變數low和high,將low、high分別設置為要進行排序的序列的起始元素和最後一個元素的下標。第一次,low和high的取值分別為0和n-1,接下來的每次取值由劃分得到的序列起始元素和最後一個元素的下標來決定。

定義一個變數key,接下來以key的取值為基準將數組A劃分為左右兩個部分,通 常,key值為要進行排序序列的第一個元素值。第一次的取值為A[0],以後毎次取值由要劃 分序列的起始元素決定。

從high所指向的數組元素開始向左掃描,掃描的同時將下標為high的數組元素依次與劃分基準值key進行比較操作,直到high不大於low或找到第一個小於基準值key的數組元素,然後將該值賦值給low所指向的數組元素,同時將low右移一個位置。

如果low依然小於high,那麼由low所指向的數組元素開始向右掃描,掃描的同時將下標為low的數組元素值依次與劃分的基準值key進行比較操作,直到low不小於high或找到第一個大於基準值key的數組元素,然後將該值賦給high所指向的數組元素,同時將high左移一個位置。

重復步驟(3) (4),直到low的植不小於high為止,這時成功劃分後得到的左右兩部分分別為A[low……pos-1]和A[pos+1……high],其中,pos下標所對應的數組元素的值就是進行劃分的基準值key,所以在劃分結束時還要將下標為pos的數組元素賦值 為 key。

③ 數據查找和排序

java:
Java排序演算法
package com.cucu.test;

/**
* @author http://www.linewell.com <a href=mailto:[email protected]>[email protected]</a>
* @version 1.0
*/
public class Sort {

public void swap(int a[], int i, int j) {
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}

public int partition(int a[], int low, int high) {
int pivot, p_pos, i;
p_pos = low;
pivot = a[p_pos];
for (i = low + 1; i <= high; i++) {
if (a[i] > pivot) {
p_pos++;
swap(a, p_pos, i);
}
}
swap(a, low, p_pos);
return p_pos;
}

public void quicksort(int a[], int low, int high) {
int pivot;
if (low < high) {
pivot = partition(a, low, high);
quicksort(a, low, pivot - 1);
quicksort(a, pivot + 1, high);
}

}

public static void main(String args[]) {
int vec[] = new int[] { 37, 47, 23, -5, 19, 56 };
int temp;
//選擇排序法(Selection Sort)
long begin = System.currentTimeMillis();
for (int k = 0; k < 1000000; k++) {
for (int i = 0; i < vec.length; i++) {
for (int j = i; j < vec.length; j++) {
if (vec[j] > vec[i]) {
temp = vec[i];
vec[i] = vec[j];
vec[j] = temp;
}
}

}
}
long end = System.currentTimeMillis();
System.out.println("選擇法用時為:" + (end - begin));
//列印排序好的結果
for (int i = 0; i < vec.length; i++) {
System.out.println(vec[i]);
}
// 冒泡排序法(Bubble Sort)
begin = System.currentTimeMillis();
for (int k = 0; k < 1000000; k++) {
for (int i = 0; i < vec.length; i++) {
for (int j = i; j < vec.length - 1; j++) {
if (vec[j + 1] > vec[j]) {
temp = vec[j + 1];
vec[j + 1] = vec[j];
vec[j] = temp;
}
}

}
}
end = System.currentTimeMillis();
System.out.println("冒泡法用時為:" + (end - begin));
//列印排序好的結果
for (int i = 0; i < vec.length; i++) {
System.out.println(vec[i]);
}

//插入排序法(Insertion Sort)
begin = System.currentTimeMillis();
for (int k = 0; k < 1000000; k++) {
for (int i = 1; i < vec.length; i++) {
int j = i;
while (vec[j - 1] < vec[i]) {
vec[j] = vec[j - 1];
j--;
if (j <= 0) {
break;
}
}
vec[j] = vec[i];
}
}
end = System.currentTimeMillis();
System.out.println("插入法用時為:" + (end - begin));
//列印排序好的結果
for (int i = 0; i < vec.length; i++) {
System.out.println(vec[i]);
}

//快速排序法(Quick Sort)

Sort s = new Sort();
begin = System.currentTimeMillis();
for (int k = 0; k < 1000000; k++) {
s.quicksort(vec, 0, 5);
}
end = System.currentTimeMillis();
System.out.println("快速法用時為:" + (end - begin));
//列印排序好的結果
for (int i = 0; i < vec.length; i++) {
System.out.println(vec[i]);
}
}

}
以下是運行結果:
選擇法用時為:234
56
47
37
23
19
-5
冒泡法用時為:172
56
47
37
23
19
-5
插入法用時為:78
56
47
37
23
19
-5
快速法用時為:297
56
47
37
23
19
-5

④ 八大經典排序演算法原理及實現

該系列文章主要是記錄下自己暑假這段時間的學習筆記,暑期也在實習,抽空學了很多,每個方面的知識我都會另起一篇博客去記錄,每篇頭部主要是另起博客的鏈接。

冒泡排序演算法應該是大家第一個接觸的演算法,其原理都應該懂,但我還是想以自己的語言來敘述下其步奏:

按照計算時間復雜度的規則,去掉常數、去掉最高項系數,其復雜度為O(N^2)
冒泡排序及其復雜度分析

空間復雜度就是在交換元素時那個臨時變數所佔的內存

給定一個整數序列{6,1,2,3,4},每完成一次外層循環的結果為:

我們發現第一次外層循環之後就排序成功了,但是還是會繼續循環下去,造成了不必要的時間復雜度,怎麼優化?

冒泡排序都是相鄰元素的比較,當相鄰元素相等時並不會交換,因此冒泡排序演算法是穩定性演算法

插入排序是對冒泡排序的一種改進

插入排序的思想是數組是部分有序的,再將無序的部分插入有序的部分中去,如圖:
(圖片來自 這里 )

空間復雜度就是在交換元素時那個臨時變數所佔的內存

插入排序的優化,有兩種方案:

文章後面會給出這兩種排序演算法

由於插入排序也是相鄰元素的比較,遇到相等的相鄰元素時不會發生交換,也不會造成相等元素之間的相對位置發生變化

其原理是從未排序的元素中選出最小值(最大值)放在已排序元素的後面

空間復雜度就是在交換元素時那個臨時變數所佔的內存

選擇排序是不穩定的,比如 3 6 3 2 4,第一次外層循環中就會交換第一個元素3和第四個元素2,那麼就會導致原序列的兩個3的相對位置發生變化

希爾排序算是改良版的插入排序演算法,所以也稱為希爾插入排序演算法

其原理是將序列分割成若乾子序列(由相隔某個 增量 的元素組成的),分別進行直接插入排序;接著依次縮小增量繼續進行排序,待整個序列基本有序時,再對全體元素進行插入排序,我們知道當序列基本有序時使用直接插入排序的效率很高。
上述描述只是其原理,真正的實現可以按下述步奏來:

希爾排序的效率取決於 增量值gap 的選取,這涉及到數學上尚未解決的難題,但是某些序列中復雜度可以為O(N 1.3),當然最好肯定是O(N),最壞是O(N 2)

空間復雜度就是在交換元素時那個臨時變數所佔的內存

希爾排序並不只是相鄰元素的比較,有許多跳躍式的比較,難免會出現相同元素之間的相對位置發生變化,所以希爾排序是不穩定的

理解堆排序,就必須得先知道什麼是堆?

二叉樹的特點:

當父節點的值總是大於子結點時為 最大堆 ;反之為 最小堆 ,下圖就為一個二叉堆

一般用數組來表示堆,下標為 i 的結點的父結點下標為(i-1)/2;其左右子結點分別為 (2 i + 1)、(2 i + 2)

怎麼將給定的數組序列按照堆的性質,調整為堆?

這里以建立最小堆為示例,

很明顯對於其葉子結點來說,已經是一個合法的子堆,所以做堆調整時,子節點沒有必要進行,這里只需從結點為A[4] = 50的結點開始做堆調整,即從(n/2 - 1)位置處向上開始做堆調整:

由於每次重新恢復堆的時間復雜度為O(logN),共N - 1次重新恢復堆操作,再加上前面建立堆時N / 2次向下調整,每次調整時間復雜度也為O(logN),二次操作時間相加還是O(N logN)。故堆排序的時間復雜度為O(N * logN)。

空間復雜度就是在交換元素時那個臨時變數所佔的內存

由於堆排序也是跨越式的交換數據,會導致相同元素之間的相對位置發生變化,則演算法不穩定。比如 5 5 5 ,堆化數組後將堆頂元素5與堆尾元素5交換,使得第一個5和第三個5的相對位置發生變化

歸並排序是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。

快速排序在應該是大家經常看到、聽到的演算法,但是真正默寫出來是有難度的。希望大家看了下面 挖坑填數 方法後,能快速寫出、快速排序。

其原理就這么幾句話,但是現實起來並不是這么簡單,我們採取流行的一種方式 挖坑填數分治法

對於序列: 72 6 57 88 60 42 83 73 48 85

數組變為: 48 6 57 88 60 42 83 73 88 85
再重復上面的步驟,先從後向前找,再從前向後找:

數組變為: 48 6 57 42 60 72 83 73 88 85
可以看出a[5]前面的數字都小於它,a[5]後面的數字都大於它。因此再對a[0…4]和a[6…9]這二個子區間重復上述步驟就可以了

空間復雜度,主要是遞歸造成的棧空間的使用:

快速排序的優化主要在於基準數的選取

快速排序也是跨越式比較及交換數據,易導致相同元素之間的相對位置發生變化,所以快速排序不穩定

前面也說了二分查找排序是改進的插入排序,不同之處在於,在有序區間查找新元素插入位置時,為了減少比較次數提高效率,採用二分查找演算法進行插入位置的確定
具體步驟,設數組為a[0…n]:

二分查找插入位置,因為不是查找相等值,而是基於比較查插入合適的位置,所以必須查到最後一個元素才知道插入位置。
二分查找最壞時間復雜度:當2^X>=n時,查詢結束,所以查詢的次數就為x,而x等於log2n(以2為底,n的對數)。即O(log2n)
所以,二分查找排序比較次數為:x=log2n
二分查找插入排序耗時的操作有:比較 + 後移賦值。時間復雜度如下:

二分查找排序在交換數據時時進行移動,當遇到有相等值插入時也只會插入其後面,不會影響其相等元素之間的相對位置,所以是穩定的

白話經典演算法排序
冒泡排序選擇排序
快速排序復雜度分析
優化的插入排序

⑤ 排序演算法是怎樣的

一、背景介紹

在計算機科學與數學中,排序演算法(Sorting algorithm)是一種能將一串資料依照特定排序方式進行排列的一種演算法。

最常用到的排序方式是數字順序以及字典順序。

有效的排序演算法在一些演算法(例如搜尋演算法與合並演算法)中是重要的, 如此這些演算法才能得到正確解答。

排序演算法也用在處理文字資料以及產生人類可讀的輸出結果。

基本上,排序演算法的輸出必須遵守下列兩個原則:

1、輸出結果為遞增序列(遞增是針對所需的排序順序而言);

2、輸出結果是原輸入的一種排列、或是重組;

雖然排序演算法是一個簡單的問題,但是從計算機科學發展以來,在此問題上已經有大量的研究。 更多的新演算法仍在不斷的被發明。


二、知識剖析

查找和排序演算法是演算法的入門知識,其經典思想可以用於很多演算法當中。因為其實現代碼較短,應用較常見。 所以在面試中經常會問到排序演算法及其相關的問題。但萬變不離其宗,只要熟悉了思想,靈活運用也不是難事。

一般在面試中最常考的是快速排序和冒泡排序,並且經常有面試官要求現場寫出這兩種排序的代碼。對這兩種排序的代碼一定要信手拈來才行。除此之外,還有插入排序、冒泡排序、堆排序、基數排序、桶排序等。

三、常見的幾種演算法:

冒泡演算法、選擇排序、插入排序、希爾排序、歸並排序、快速排序

演算法的特點:

1、有限性:一個演算法必須保證執行有限步之後結束。

2、確切性: 一個演算法的每一步驟必須有確切的定義。

3、輸入:一個演算法有零個或多個輸入,以刻畫運算對象的初始情況,所謂零個輸入是指演算法本身給定了初始條件。

4、輸出:一個演算法有一個或多個輸出。沒有輸出的演算法毫無意義。

5、可行性:演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步,即每個計算步都可以在有限時間內完成(也稱之為有效性)。

⑥ 常見查找和排序演算法

查找成功最多要n 次,平均(n+1)/2次, 時間復雜度為O(n)
優點:既適用順序表也適用單鏈表,同時對表中元素順序無要求,給插入帶來方便,只需插入表尾即可。
缺點:速度較慢。

改進:在表尾設置一個崗哨,這樣不用去循環判斷數組下標是否越界,因為最後必然成立。

適用條件:

二分查找的判定樹不僅是二叉排序樹,而且是一棵理想平衡樹。 時間復雜度為O(lbn)

循環實現

遞歸實現

待排序的元素需要實現 Java 的 Comparable 介面,該介面有 compareTo() 方法,可以用它來判斷兩個元素的大小關系。

從數組中選擇最小元素,將它與數組的第一個元素交換位置。再從數組剩下的元素中選擇出最小的元素,將它與數組的第二個元素交換位置。不斷進行這樣的操作,直到將整個數組排序。

選擇排序需要 ~N2/2 次比較和 ~N 次交換,==它的運行時間與輸入無關==,這個特點使得它對一個已經排序的數組也需要這么多的比較和交換操作。

從左到右不斷 交換相鄰逆序的元素 ,在一輪的循環之後,可以讓未排序的最大元素上浮到右側。

在一輪循環中,如果沒有發生交換,那麼說明數組已經是有序的,此時可以直接退出。

每次都 將當前元素插入到左側已經排序的數組中 ,使得插入之後左側數組依然有序。

對於數組 {3, 5, 2, 4, 1},它具有以下逆序:(3, 2), (3, 1), (5, 2), (5, 4), (5, 1), (2, 1), (4, 1),插入排序每次只能交換相鄰元素,令逆序數量減少 1,因此插入排序需要交換的次數為逆序數量。

==插入排序的時間復雜度取決於數組的初始順序,如果數組已經部分有序了,那麼逆序較少,需要的交換次數也就較少,時間復雜度較低==。

對於大規模的數組,插入排序很慢,因為它只能交換相鄰的元素,每次只能將逆序數量減少 1。希爾排序的出現就是為了解決插入排序的這種局限性,它通過交換不相鄰的元素,每次可以將逆序數量減少大於 1。

希爾排序使用插入排序對間隔 h 的序列進行排序。通過不斷減小 h,最後令 h=1,就可以使得整個數組是有序的。

希爾排序的運行時間達不到平方級別,使用遞增序列 1, 4, 13, 40, ... 的希爾排序所需要的比較次數不會超過 N 的若干倍乘於遞增序列的長度。後面介紹的高級排序演算法只會比希爾排序快兩倍左右。

歸並排序的思想是將數組分成兩部分,分別進行排序,然後歸並起來。

歸並方法將數組中兩個已經排序的部分歸並成一個。

將一個大數組分成兩個小數組去求解。

因為每次都將問題對半分成兩個子問題,這種對半分的演算法復雜度一般為 O(NlogN)。

先歸並那些微型數組,然後成對歸並得到的微型數組。

取 a[l] 作為切分元素,然後從數組的左端向右掃描直到找到第一個大於等於它的元素,再從數組的右端向左掃描找到第一個小於它的元素,交換這兩個元素。不斷進行這個過程,就可以保證左指針 i 的左側元素都不大於切分元素,右指針 j 的右側元素都不小於切分元素。當兩個指針相遇時,將切分元素 a[l] 和 a[j] 交換位置。

快速排序是原地排序,不需要輔助數組,但是遞歸調用需要輔助棧。

快速排序最好的情況下是每次都正好將數組對半分,這樣遞歸調用次數才是最少的。這種情況下比較次數為 CN=2CN/2+N,復雜度為 O(NlogN)。

最壞的情況下,第一次從最小的元素切分,第二次從第二小的元素切分,如此這般。因此最壞的情況下需要比較 N2/2。為了防止數組最開始就是有序的,在進行快速排序時需要隨機打亂數組。

因為快速排序在小數組中也會遞歸調用自己,對於小數組,插入排序比快速排序的性能更好,因此在小數組中可以切換到插入排序。

最好的情況下是每次都能取數組的中位數作為切分元素,但是計算中位數的代價很高。一種折中方法是取 3 個元素,並將大小居中的元素作為切分元素。

對於有大量重復元素的數組,可以將數組切分為三部分,分別對應小於、等於和大於切分元素。

三向切分快速排序對於有大量重復元素的隨機數組可以在線性時間內完成排序。

快速排序的 partition() 方法,會返回一個整數 j 使得 a[l..j-1] 小於等於 a[j],且 a[j+1..h] 大於等於 a[j],此時 a[j] 就是數組的第 j 大元素。

可以利用這個特性找出數組的第 k 大的元素。

該演算法是線性級別的,假設每次能將數組二分,那麼比較的總次數為 (N+N/2+N/4+..),直到找到第 k 個元素,這個和顯然小於 2N。

堆中某個節點的值總是大於等於其子節點的值,並且堆是一顆完全二叉樹。

堆可以用數組來表示,這是因為堆是完全二叉樹,而完全二叉樹很容易就存儲在數組中。位置 k 的節點的父節點位置為 k/2,而它的兩個子節點的位置分別為 2k 和 2k+1。這里不使用數組索引為 0 的位置,是為了更清晰地描述節點的位置關系。

在堆中,當一個節點比父節點大,那麼需要交換這個兩個節點。交換後還可能比它新的父節點大,因此需要不斷地進行比較和交換操作,把這種操作稱為上浮。

類似地,當一個節點比子節點來得小,也需要不斷地向下進行比較和交換操作,把這種操作稱為下沉。一個節點如果有兩個子節點,應當與兩個子節點中最大那個節點進行交換。

將新元素放到數組末尾,然後上浮到合適的位置。

從數組頂端刪除最大的元素,並將數組的最後一個元素放到頂端,並讓這個元素下沉到合適的位置。

把最大元素和當前堆中數組的最後一個元素交換位置,並且不刪除它,那麼就可以得到一個從尾到頭的遞減序列,從正向來看就是一個遞增序列,這就是堆排序。

一個堆的高度為logN,因此在堆中插入元素和刪除最大元素的復雜度都為 logN。

對於堆排序,由於要對 N 個節點進行下沉操作,因此復雜度為 NlogN。

堆排序是一種原地排序,沒有利用額外的空間。

現代操作系統很少使用堆排序,因為它無法利用局部性原理進行緩存,也就是數組元素很少和相鄰的元素進行比較和交換。

計數排序的核心在於將輸入的數據值轉化為鍵存儲在額外開辟的數組空間中。作為一種線性時間復雜度的排序,==計數排序要求輸入的數據必須是有確定范圍的整數==。

當輸入的元素是 n 個 0 到 k 之間的整數時,它的==運行時間是 O(n + k)==。計數排序不是比較排序,排序的速度快於任何比較排序演算法。由於用來計數的數組C的長度取決於待排序數組中數據的范圍(等於待排序數組的最大值與最小值的差加上1),這使得計數排序對於數據范圍很大的數組,需要大量時間和內存。比較適合用來排序==小范圍非負整數數組的數組==。

桶排序是計數排序的升級版。它利用了函數的映射關系,高效與否的關鍵就在於這個映射函數的確定。為了使桶排序更加高效,我們需要做到這兩點:

同時,對於桶中元素的排序,選擇何種比較排序演算法對於性能的影響至關重要。

當輸入數據均勻分配到每一個桶時最快,當都分配到同一個桶時最慢。

實間復雜度N*K

快速排序是最快的通用排序演算法,它的內循環的指令很少,而且它還能利用緩存,因為它總是順序地訪問數據。它的運行時間近似為 ~cNlogN,這里的 c 比其它線性對數級別的排序演算法都要小。

使用三向切分快速排序,實際應用中可能出現的某些分布的輸入能夠達到線性級別,而其它排序演算法仍然需要線性對數時間。

閱讀全文

與簡單排序及順序查找演算法及實現相關的資料

熱點內容
穿越之命令與征服將軍 瀏覽:351
android廣播重復 瀏覽:832
像阿里雲一樣的伺服器 瀏覽:318
水冷空調有壓縮機嗎 瀏覽:478
訪問日本伺服器可以做什麼 瀏覽:432
bytejava詳解 瀏覽:448
androidjava7 瀏覽:384
伺服器在山洞裡為什麼還有油 瀏覽:885
天天基金app在哪裡下載 瀏覽:974
伺服器軟路由怎麼做 瀏覽:289
冰箱壓縮機出口 瀏覽:227
OPT最佳頁面置換演算法 瀏覽:644
網盤忘記解壓碼怎麼辦 瀏覽:852
文件加密看不到裡面的內容 瀏覽:653
程序員腦子里都想什麼 瀏覽:433
oppp手機信任app在哪裡設置 瀏覽:187
java地址重定向 瀏覽:272
一年級下冊摘蘋果的演算法是怎樣的 瀏覽:448
程序員出軌電視劇 瀏覽:90
伺服器系統地址怎麼查 瀏覽:56