導航:首頁 > 源碼編譯 > 迪傑斯特拉c演算法

迪傑斯特拉c演算法

發布時間:2023-05-18 22:57:45

㈠ 迪傑斯特拉演算法

按路徑長度遞增次序產生最短路徑演算法:
把V分成兩組: (1)S:已求出最短路徑的頂點的集合
(2)V-S=T:尚未確定最短路徑的頂點集合
將T中頂點按最短路徑遞增的次序加入到S中,
保證:(1)從源點V0到S中各頂點的最短路徑長度都不大於從V0到T中任何頂點的最短路徑長度
(2)每個頂點對應一個距離值 S中頂點:從V0到此頂點的最短路徑長度 T中頂點:從V0到此頂點的只包括S中頂點作中間 頂點的最短路徑長度 依據:可以證明V0到T中頂點Vk的最短路徑,或是從V0到Vk的 直接路徑的權值;或是從V0經S中頂點到Vk的路徑權值之和 (反證法可證) 求最短路徑步驟 … 初使時令 S={V0},T={其餘頂點},T中頂點對應的距離值 ƒ 若存在<V0,Vi>,為<V0,Vi>弧上的權值 ƒ 若不存在<V0,Vi>,為∝ … 從T中選取一個其距離值為最小的頂點W,加入S … 對T中頂點的距離值進行修改:若加進W作中間頂點,從V0到Vi的 距離值比不加W的路徑要短,則修改此距離值 … 重復上述步驟,直到S中包含所有頂點,即S=V為止

㈡ 迪傑斯特拉(Dijkstra)

迪傑斯特拉演算法主要是用廣度優先搜索的演算法計算出一個頂點V到各個頂點的最短距離
ver表示沒有走過的頂點,dis表示頂點V到各個頂點的距離
首先從ver集合取出取出頂點M,將頂點V的相鄰頂點之間的邊取出,存儲在一個list1集合裡面,將其排序
從list1集合取孫凳出最小值的頂點N,頌凱余並查看VM加上MN的距離是否小野滾於VN的距離,小於則更新,並且從未走的集合中刪除頂點N

㈢ 迪傑斯特拉演算法的演算法思想

按路徑長度遞增次序產生演算法:
把頂點集合V分成兩組:
(1)S:已求出的頂點的集合(初始時只含有源點V0)
(2)V-S=T:尚未確定的頂點集合
將T中頂點按遞增的次序加入到S中,保證:
(1)從源點V0到S中其他各頂點的長度都不大於從V0到T中任何頂點的最短路徑長度
(2)每個頂點對應一個距離值
S中頂點:從V0到此頂點的長度
T中頂點:從V0到此頂點的只包括S中頂點作中間頂點的最短路徑長度
依據:可以證明V0到T中頂點Vk的,或是從V0到Vk的直接路徑的權值;或是從V0經S中頂點到Vk的路徑權值之和
(反證法可證)
求最短路徑步驟
演算法步驟如下:
G={V,E}
1. 初始時令 S={V0},T=V-S={其餘頂點},T中頂點對應的距離值
若存在<V0,Vi>,d(V0,Vi)為<V0,Vi>弧上的權值
若不存在<V0,Vi>,d(V0,Vi)為∞
2. 從T中選取一個與S中頂點有關聯邊且權值最小的頂點W,加入到S中
3. 對其餘T中頂點的距離值進行修改:若加進W作中間頂點,從V0到Vi的距離值縮短,則修改此距離值
重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止

㈣ dijkstra演算法復雜度是多少

1、簡單復雜度是O(n2)。

Dijkstra 演算法最簡單的實現方法是用一個鏈表或者數組來存儲所有頂點的集合 Q,所以搜索 Q 中最小元素的運算(Extract-Min(Q))只需要線性搜索 Q 中的所有元素。這樣的話演算法的運行時間是 O(n2)。
附演算法:

1functionDijkstra(G,w,s)
2foreachvertexvinV[G]
3d[v]:=infinity
4previous[v]:=undefined
5d[s]:=0
6S:=emptyset
7Q:=setofallvertices
8whileQisnotanemptyset
9u:=Extract_Min(Q)
10S:=Sunion{u}
11foreachedge(u,v)outgoingfromu
12ifd[v]>d[u]+w(u,v)
13d[v]:=d[u]+w(u,v)
14previous[v]:=u

O(n)+O(1)+O(n)+O(n^2) == O(n^2).


2、用堆優化後的時間復雜度:O((m+n)log n)

㈤ 迪傑斯特拉演算法難度什麼水平

迪傑斯特拉演算法難度是一般水平。迪傑斯特拉演算法是由荷蘭計算機科學家狄克斯特拉於1959年提出的,是從一個頂點到其餘各頂點的最短路徑演算法,解決的是有權圖中最短路徑問題。迪傑斯特拉演算法的主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。迪傑斯特拉演算法的成功率是最高的,因為它每次必能搜索到最優路徑。但迪傑斯特拉演算法演算法的搜索速度是最慢的。

㈥ djstl演算法

定義Dijkstra(迪傑斯特拉)演算法是典型的單源最短路徑演算法,用於計算一個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。Dijkstra演算法是很有代表性的最短路徑演算法,在很多專業課程中都作為基本內容有詳細的介紹,如數據結構,圖論,運籌學等等。Dijkstra一般的表述通常有兩種方式,一種用永久和臨時標號方式,一種是用OPEN,
CLOSE表的方式,這里均採用永久和臨時標號的方式。注意該演算法要求圖中不存在負權邊。
問題描述在無向圖
G=(V,E) 中,假設每條邊 E[i] 的長度為 w[i],找到由頂點 V0 到其餘各點的最短路徑。(單源最短路徑)

編輯本段迪傑斯特拉演算法迪傑斯特拉(Dijkstra)演算法思想
按路徑長度遞增次序產生最短路徑演算法:

把V分成兩組:

(1)S:已求出最短路徑的頂點的集合

(2)V-S=T:尚未確定最短路徑的頂點集合

將T中頂點按最短路徑遞增的次序加入到S中,

保證:(1)從源點V0到S中各頂點的最短路徑長度都不大於

從V0到T中任何頂點的最短路徑長度

(2)每個頂點對應一個距離值

S中頂點:從V0到此頂點的最短路徑長度

T中頂點:從V0到此頂點的只包括S中頂點作中間

頂點的最短路徑長度

依據:可以證明V0到T中頂點Vk的最短路徑,或是從V0到Vk的

直接路徑的權值;或是從V0經S中頂點到Vk的路徑權值之和

(反證法可證)

求最短路徑步驟
演算法步驟如下:

1. 初使時令 S={V0},T={其餘頂點},T中頂點對應的距離值

若存在<V0,Vi>,d(V0,Vi)為<V0,Vi>弧上的權值

若不存在<V0,Vi>,d(V0,Vi)為∝

2. 從T中選取一個其距離值為最小的頂點W且不在S中,加入S

3. 對S中頂點的距離值進行修改:若加進W作中間頂點,從V0到Vi的

距離值縮短,則修改此距離值

重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止

編輯本段迪傑斯特拉演算法的原理首先,引進一個輔助向量D,它的每個分量D表示當前所找到的從始點v到每個終點vi的最短路徑的長度。如D[3]=2表示從始點v到終點3的路徑相對最小長度為2。這里強調相對就是說在演算法過程中D的值是在不斷逼近最終結果但在過程中不一定就等於最短路徑長度。它的初始狀態為:若從v到vi有弧,則D為弧上的權值;否則置D為∞。顯然,長度為
D[j]=Min{D | vi∈V} 的路徑就是從v出發的長度最短的一條最短路徑。此路徑為(v,vj)。
那麼,下一條長度次短的最短路徑是哪一條呢?假設該次短路徑的終點是vk,則可想而知,這條路徑或者是(v,vk),或者是(v,vj,vk)。它的長度或者是從v到vk的弧上的權值,或者是D[j]和從vj到vk的弧上的權值之和。
一般情況下,假設S為已求得最短路徑的終點的集合,則可證明:下一條最短路徑(設其終點為X)或者是弧(v,x),或者是中間只經過S中的頂點而最後到達頂點X的路徑。因此,下一條長度次短的最短路徑的長度必是D[j]=Min{D
| vi∈V-S} 其中,D或者是弧(v,vi)上的權值,或者是D[k](vk∈S)和弧(vk,vi)上的權值之和。 迪傑斯特拉演算法描述如下:
1)arcs表示弧上的權值。若不存在,則置arcs為∞(在本程序中為MAXCOST)。S為已找到從v出發的最短路徑的終點的集合,初始狀態為空集。那麼,從v出發到圖上其餘各頂點vi可能達到的最短路徑長度的初值為D=arcs[Locate
Vex(G,v),i] vi∈V 2)選擇vj,使得D[j]=Min{D | vi∈V-S} 3)修改從v出發到集合V-S上任一頂點vk可達的最短路徑長度。

編輯本段迪傑斯特拉演算法C#程序public class Edge

{

public string StartNodeID ;

public string EndNodeID ;

public double Weight ; //權值,代價

} 節點則抽象成Node類,一個節點上掛著以此節點作為起點的「出邊」表。

public class Node

{

private string iD ;

private ArrayList edgeList ;//Edge的集合--出邊表

public Node(string id )

{

this.iD = id ;

this.edgeList = new ArrayList() ;

}

property#region property

public string ID

{

get

{

return this.iD ;

}

}

public ArrayList EdgeList

{

get

{

return this.edgeList ;

}

}

#endregion

}

在計算的過程中,我們需要記錄到達每一個節點權值最小的路徑,這個抽象可以用PassedPath類來表示:

/// <summary>

/// PassedPath 用於緩存計算過程中的到達某個節點的權值最小的路徑

/// </summary>

public class PassedPath

{

private string curNodeID ;

private bool beProcessed ; //是否已被處理

private double weight ; //累積的權值

private ArrayList passedIDList ; //路徑

public PassedPath(string ID)

{

this.curNodeID = ID ;

this.weight = double.MaxValue ;

this.passedIDList = new ArrayList() ;

this.beProcessed = false ;

}

#region property

public bool BeProcessed

{

get

{

return this.beProcessed ;

}

set

{

this.beProcessed = value ;

}

}

public string CurNodeID

{

get

{

return this.curNodeID ;

}

}

public double Weight

{

get

{

return this.weight ;

}

set

{

this.weight = value ;

}

}

public ArrayList PassedIDList

{

get

{

return this.passedIDList ;

}

}

#endregion

}

另外,還需要一個表PlanCourse來記錄規劃的中間結果,即它管理了每一個節點的PassedPath。

/// <summary>

/// PlanCourse 緩存從源節點到其它任一節點的最小權值路徑=》路徑表

/// </summary>

public class PlanCourse

{

private Hashtable htPassedPath ;

#region ctor

public PlanCourse(ArrayList nodeList ,string originID)

{

this.htPassedPath = new Hashtable() ;

Node originNode = null ;

foreach(Node node in nodeList)

{

if(node.ID == originID)

{

originNode = node ;

}

else

{

PassedPath pPath = new PassedPath(node.ID) ;

this.htPassedPath.Add(node.ID ,pPath) ;

}

}

if(originNode == null)

{

throw new Exception("The origin node is not exist !")
;

}

this.InitializeWeight(originNode) ;

}

private void InitializeWeight(Node originNode)

{

if((originNode.EdgeList == null)
||(originNode.EdgeList.Count == 0))

{

return ;

}

foreach(Edge edge in originNode.EdgeList)

{

PassedPath pPath = this[edge.EndNodeID] ;

if(pPath == null)

{

continue ;

}

pPath.PassedIDList.Add(originNode.ID) ;

pPath.Weight = edge.Weight ;

}

}

#endregion

public PassedPath this[string nodeID]

{

get

{

return (PassedPath)this.htPassedPath[nodeID] ;

}

}

}

在所有的基礎構建好後,路徑規劃演算法就很容易實施了,該演算法主要步驟如下:

(1)用一張表(PlanCourse)記錄源點到任何其它一節點的最小權值,初始化這張表時,如果源點能直通某節點,則權值設為對應的邊的權,否則設為double.MaxValue。

(2)選取沒有被處理並且當前累積權值最小的節點TargetNode,用其邊的可達性來更新到達其它節點的路徑和權值(如果其它節點
經此節點後權值變小則更新,否則不更新),然後標記TargetNode為已處理。

(3)重復(2),直至所有的可達節點都被處理一遍。

(4)從PlanCourse表中獲取目的點的PassedPath,即為結果。

下面就來看上述步驟的實現,該實現被封裝在RoutePlanner類中:

/// <summary>

/// RoutePlanner 提供圖演算法中常用的路徑規劃功能。

/// 2005.09.06

/// </summary>

public class RoutePlanner

{

public RoutePlanner()

{

}

#region Paln

//獲取權值最小的路徑

public RoutePlanResult Paln(ArrayList nodeList ,string
originID ,string destID)

{

PlanCourse planCourse = new PlanCourse(nodeList
,originID) ;

Node curNode = this.GetMinWeightRudeNode(planCourse
,nodeList ,originID) ;

#region 計算過程

while(curNode != null)

{

PassedPath curPath = planCourse[curNode.ID] ;

foreach(Edge edge in curNode.EdgeList)

{

PassedPath targetPath = planCourse[edge.EndNodeID] ;

double tempWeight = curPath.Weight + edge.Weight ;

if(tempWeight < targetPath.Weight)

{

targetPath.Weight = tempWeight ;

targetPath.PassedIDList.Clear() ;

for(int i=0 ;i<curPath.PassedIDList.Count ;i++)

{

targetPath.PassedIDList.Add(curPath.PassedIDList.ToString())
;

}

targetPath.PassedIDList.Add(curNode.ID) ;

}

}

//標志為已處理

planCourse[curNode.ID].BeProcessed = true ;

//獲取下一個未處理節點

curNode = this.GetMinWeightRudeNode(planCourse
,nodeList ,originID) ;

}

#endregion

//表示規劃結束

return this.GetResult(planCourse ,destID) ;

}

#endregion

#region private method

#region GetResult

//從PlanCourse表中取出目標節點的PassedPath,這個PassedPath即是規劃結果

private RoutePlanResult GetResult(PlanCourse
planCourse ,string destID)

{

PassedPath pPath = planCourse[destID] ;

if(pPath.Weight == int.MaxValue)

{

RoutePlanResult result1 = new RoutePlanResult(null
,int.MaxValue) ;

return result1 ;

}

string[] passedNodeIDs = new
string[pPath.PassedIDList.Count] ;

for(int i=0 ;i<passedNodeIDs.Length ;i++)

{

passedNodeIDs = pPath.PassedIDList.ToString() ;

}

RoutePlanResult result = new
RoutePlanResult(passedNodeIDs ,pPath.Weight) ;

return result ;

}

#endregion

#region GetMinWeightRudeNode

//從PlanCourse取出一個當前累積權值最小,並且沒有被處理過的節點

private Node GetMinWeightRudeNode(PlanCourse
planCourse ,ArrayList nodeList ,string originID)

{

double weight = double.MaxValue ;

Node destNode = null ;

foreach(Node node in nodeList)

{

if(node.ID == originID)

{

continue ;

}

PassedPath pPath = planCourse[node.ID] ;

if(pPath.BeProcessed)

{

continue ;

}

if(pPath.Weight < weight)

{

weight = pPath.Weight ;

destNode = node ;

}

}

return destNode ;

}

#endregion

#endregion

}

編輯本段迪傑斯特拉演算法pascal程序type bool=array[1..10]of
boolean;

arr=array[0..10]of integer;

var a:array[1..10,1..10]of integer;
//存儲圖的鄰接數組,無邊為10000

c,d,e:arr; //c為最短路徑數值,d為各點前趨,

t:bool; //e:路徑,t為輔助數組

i,j,n,m:integer;

inf,outf:text;

////////////////////////////////////////////////////////////////////////////////

procere init; //不同題目鄰接數組建立方式不一樣

begin

assign(inf,'dijkstra.in');
assign(outf,'dijkstra.out');

reset(inf); rewrite(outf);

read(inf,n);

for i:=1 to n do

for j:=1 to n do

begin

read(inf,a[i,j]);

if a[i,j]=0 then a[i,j]:=10000;

end;

end;

////////////////////////////////////////////////////////////////////////////////

procere dijkstra(qi:integer; t:bool; var c{,d}:arr);
//qi起點,{}中為求路徑部

var i,j,k,min:integer; //分,不需求路徑時可以不要

begin //t數組一般在調用前初始

t[qi]:=true; //化成false,也可將部分點

{for i:=1 to n do d[i]:=qi; d[qi]:=0; }
//初始化成true以迴避這些點

for i:=1 to n do c[i]:=a[qi,i];

for i:=1 to n-1 do

begin

min:=10001;

for j:=1 to n do

if (c[j]<min)and(not(t[j])) then begin k:=j;
min:=c[j];end;

t[k]:=true;

for j:=1 to n do

if (c[k]+a[k,j]<c[j])and(not(t[j])) then

begin

c[j]:=c[k]+a[k,j]; {d[j]:=k;}

end;

end;

end;

////////////////////////////////////////////////////////////////////////////////

procere make(zh:integer; d:arr; var e:arr);
//生成路徑,e[0]保存路徑

var i,j,k:integer; //上的節點個數

begin

i:=0;

while d[zh]<>0 do

begin

inc(i);e[i]:=zh;zh:=d[zh];

end;

inc(i);e[i]:=qi; e[0]:=I;

end;

主程序調用:求最短路徑長度:初始化t,然後dijkstra(qi,t,c,d)

求路徑:make(m,d,e) ,m是終點

編輯本段Dijkstra演算法的堆優化(PASCAL實現)一、思考
我們可以發現,在實現步驟時,效率較低(需要O(n),使總復雜度達到O(n^2)。對此可以考慮用堆這種數據結構進行優化,使此步驟復雜度降為O(log(n))(總復雜度降為O(n
log(n))。

二、實現
1. 將與源點相連的點加入堆,並調整堆。
2. 選出堆頂元素u(即代價最小的元素),從堆中刪除,並對堆進行調整。
3. 處理與u相鄰的,未被訪問過的,滿足三角不等式的頂點
1):若該點在堆里,更新距離,並調整該元素在堆中的位置。
2):若該點不在堆里,加入堆,更新堆。
4. 若取到的u為終點,結束演算法;否則重復步驟2、3。
三、代碼
procere Dijkstra;

var

u,v,e,i:longint;

begin

fillchar(dis,sizeof(dis),$7e); //距離

fillchar(Inh,sizeof(Inh),false); //是否在堆中

fillchar(visit,sizeof(visit),false); //是否訪問過

size:=0;

e:=last[s];

while e<>0 do //步驟1

begin

u:=other[e];

if not(Inh[u]) then //不在堆里

begin

inc(size);

heap[size]:=u;

dis[u]:=cost[e];

Loc[u]:=size; //Loc數組記錄元素在堆中的位置

Inh[u]:=true;

Shift_up(Loc[u]); //上浮

end

else

if cost[e]<dis[u] then //在堆里

begin

dis[u]:=cost[e];

Shift_up(Loc[u]);

Shift_down(Loc[u]);

end;

e:=pre[e];

end;

visit[s]:=true;

while true do

begin

u:=heap[1]; //步驟2

if u=t then break; //步驟4

visit[u]:=true;

heap[1]:=heap[size];

dec(size);

Shift_down(1);

e:=last[u];

while e<>0 do //步驟3

begin

v:=other[e];

if Not(visit[v]) and (dis[u]+cost[e]<dis[v]) then
//與u相鄰的,未被訪問過的,滿足三角不等式的頂點

if Inh[v] then //在堆中

begin

dis[v]:=dis[u]+cost[e];

Shift_up(Loc[v]);

Shift_Down(Loc[v]);

end

else //不再堆中

begin

inc(size);

heap[size]:=v;

dis[v]:=dis[u]+cost[e];

Loc[v]:=size;

Inh[v]:=true;

Shift_up(Loc[v]);

end;

e:=pre[e];

end;

end;

writeln(dis[t]);

end;
http://ke..com/view/7839.htm

http://ke..com/view/1939816.htm

㈦ dijkstra演算法是什麼

迪傑斯特拉演算法用來解決從頂點v0出發到其餘頂點的最短路徑,該演算法按照最短路徑長度遞增的順序產生所以最短路徑。

對於圖G=(V,E),將圖中的頂點分成兩組:第一組S:已求出的最短路徑的終點集合(開始為{v0})。第二組V-S:尚未求出最短路徑的終點集合(開始為V-{v0}的全部結點)。

堆優化

思考

該演算法復雜度為n^2,我們可以發現,如果邊數遠小於n^2,對此可以考慮用堆這種數據結構進行優化,取出最短路徑的復雜度降為O(1);每次調整的復雜度降為O(elogn);e為該點的邊數,所以復雜度降為O((m+n)logn)。

實現

1、將源點加入堆,並調整堆。

2、選出堆頂元素u(即代價最小的元素),從堆中刪除,並對堆進行調整。

3、處理與u相鄰的,未被訪問過的,滿足三角不等式的頂點

1):若該點在堆里,更新距離,並調整該元素在堆中的位置。

2):若該點不在堆里,加入堆,更新堆。

4、若取到的u為終點,結束演算法;否則重復步驟2、3。

㈧ 【數據結構】最短路徑之迪傑斯特拉(Dijkstra)演算法與弗洛伊德(Floyd)演算法

迪傑斯特拉(Dijkstra)演算法核心: 按照路徑長度遞增的次序產生最短路徑。

迪傑斯特拉(Dijkstra)演算法步驟:(求圖中v0到v8的最短路徑)並非一下子求出v0到v8的最短路徑,而是 一步一步求出它們之間頂點的最短路徑 ,過過程中都是 基於已經求出的最短路徑的基礎上,求得更遠頂點的最短路徑,最終得出源點與終點的最短路徑

弗洛伊德(Floyd)演算法是一個經典的 動態規劃演算法

㈨ 迪傑斯特拉演算法

按路徑長度遞增次序產生最短路徑演算法: 把V分成兩組: (8)S:已求出最短路徑的頂點的集合 (8)V-S=T:尚未確定最短路徑的頂點集合 將T中頂點按最短路徑遞增的次序加入到S中, 保證

閱讀全文

與迪傑斯特拉c演算法相關的資料

熱點內容
穿越之命令與征服將軍 瀏覽:351
android廣播重復 瀏覽:832
像阿里雲一樣的伺服器 瀏覽:318
水冷空調有壓縮機嗎 瀏覽:478
訪問日本伺服器可以做什麼 瀏覽:432
bytejava詳解 瀏覽:448
androidjava7 瀏覽:384
伺服器在山洞裡為什麼還有油 瀏覽:885
天天基金app在哪裡下載 瀏覽:974
伺服器軟路由怎麼做 瀏覽:291
冰箱壓縮機出口 瀏覽:227
OPT最佳頁面置換演算法 瀏覽:644
網盤忘記解壓碼怎麼辦 瀏覽:852
文件加密看不到裡面的內容 瀏覽:653
程序員腦子里都想什麼 瀏覽:434
oppp手機信任app在哪裡設置 瀏覽:188
java地址重定向 瀏覽:272
一年級下冊摘蘋果的演算法是怎樣的 瀏覽:448
程序員出軌電視劇 瀏覽:90
伺服器系統地址怎麼查 瀏覽:56