⑴ 第三章 路徑分析演算法——基於Floyd演算法的路徑分析
Floyd演算法模高是一種用於在已知給定的加權圖中求多源點之間最短路徑的演算法。它於Diskstra演算法類似,不同點在於Diskstra計算的是單源點之間的最短路徑。Floyd演算法是在數學建模領域和日常工作中使用頻率較高的路徑分析演算法。
Floyd作為一種典型的求多源最短路徑悄漏問題的演算法,是解決任意兩個點之間最短路徑的旦運尺演算法,它的思想是基於動態規劃的思想。
見——第一章 演算法基礎——基礎演算法分析類型。
Floyd的核心思想也是基於動態規劃的理論,過程也比較簡單。
設 表示為i點到j點過程中以(1…k)集合中的節點為中間節點的最短路徑長度,則:
(1)若最短路徑經過點k,則 = + ;
(2)若最短路徑不經過點k,則 = 。
於是 = .
Floyd演算法的時間復雜度為 ,空間復雜度為 。
⑵ 最短路徑演算法
最短路徑的演算法主要有三種:floyd演算法、Dijkstra演算法、Bellman-Ford(貝爾曼-福特)
一、floyd演算法
基本思想如下:從任意節點A到任意節點B的最短路徑不外乎2種可能,1是直接從A到B,2是從A經過若干個節點X到B。所以,我們假設Dis(AB)為節點A到節點B的最短路徑的距離,對於每一個節點X,我們檢查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,證明從A到X再到B的路徑比A直接到B的路徑短,我們便設置Dis(AB) = Dis(AX) + Dis(XB),這樣一來,當我們遍歷完所有節點X,Dis(AB)中記錄的便是A到B的最短路徑的距離。
三、Bellman-Ford(貝爾曼-福特)
演算法的流程如下:
給定圖G(V, E)(其中V、E分別為圖G的頂點集與邊集),源點s,
1.數組Distant[i]記錄從源點s到頂點i的路徑長度,初始化數組Distant[n]為, Distant[s]為0;
2.以下操作循環執行至多n-1次,n為頂點數:
對於每一條邊e(u, v),如果Distant[u] + w(u, v) < Distant[v],則另Distant[v] = Distant[u]+w(u, v)。w(u, v)為邊e(u,v)的權值;
若上述操作沒有對Distant進行更新,說明最短路徑已經查找完畢,或者部分點不可達,跳出循環。否則執行下次循環;
3.為了檢測圖中是否存在負環路,即權值之和小於0的環路。對於每一條邊e(u, v),如果存在Distant[u] + w(u, v) < Distant[v]的邊,則圖中存在負環路,即是說該圖無法求出單源最短路徑。否則數組Distant[n]中記錄的就是源點s到各頂點的最短路徑長度。
可知,Bellman-Ford演算法尋找單源最短路徑的時間復雜度為O(V*E).
⑶ floyd演算法求最短路徑怎麼用
Dijkstra演算法
1.定義概覽
Dijkstra(迪傑斯特拉)演算法是典型的單源最短路徑演算法,用於計算一個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。Dijkstra演算法是很有代表性的最短路徑演算法,在很多專業課程中都作為基本內容有詳細的介紹,如數據結構,圖論,運籌學等等。注意該演算法要求圖中不存在負權邊。
問題描述:在無向圖 G=(V,E) 中,假設每條邊 E[i] 的長度為 w[i],找到由頂點 V0 到其餘各點的最短路徑。(單源最短路徑)
2.演算法描述
1)演算法思想:設G=(V,E)是一個帶權有向圖,把圖中頂點集合V分成兩組,第一組為已求出最短路徑的頂點集合(用S表示,初始時S中只有一個源點,以後每求得一條最短路徑 , 就將加入到集合S中,直到全部頂點都加入到S中,演算法就結束了),第二組為其餘未確定最短路徑的頂點集合(用U表示),按最短路徑長度的遞增次序依次把第二組的頂點加入S中。在加入的過程中,總保持從源點v到S中各頂點的最短路徑長度不大於從源點v到U中任何頂點的最短路徑長度。此外,每個頂點對應一個距離,S中的頂點的距離就是從v到此頂點的最短路徑長度,U中的頂點的距離,是從v到此頂點只包括S中的頂點為中間頂點的當前最短路徑長度。
2)演算法步驟:
a.初始時,S只包含源點,即S={v},v的距離為0。U包含除v外的其他頂點,即:U={其餘頂點},若v與U中頂點u有邊,則<u,v>正常有權值,若u不是v的出邊鄰接點,則<u,v>權值為∞。
b.從U中選取一個距離v最小的頂點k,把k,加入S中(該選定的距離就是v到k的最短路徑長度)。
c.以k為新考慮的中間點,修改U中各頂點的距離;若從源點v到頂點u的距離(經過頂點k)比原來距離(不經過頂點k)短,則修改頂點u的距離值,修改後的距離值的頂點k的距離加上邊上的權。
d.重復步驟b和c直到所有頂點都包含在S中。
⑷ Floyd演算法是什麼
Floyd演算法又稱為弗洛伊德演算法,插點法,是一種用於尋找給定的加權圖中頂點間最短路徑的演算法。
通過一個圖的權值矩陣求出它的每兩點間的最短路徑矩陣。
從圖的帶權鄰接矩陣A=[a(i,j)] n×n開始,遞歸地進行n次更新,即由矩陣D(0)=A,按一個公式,構造出矩陣D(1);又用同樣地公式由D(1)構造出D(2);……;最後又用同樣的公式由D(n-1)構造出矩陣D(n)。矩陣D(n)的i行j列元素便是i號頂點到j號頂點的最短路徑長度,稱D(n)為圖的距離矩陣,同時還可引入一個後繼節點矩陣path來記錄兩點間的最短路徑。
採用的是(鬆弛技術),對在i和j之間的所有其他點進行一次鬆弛。所以時間復雜度為O(n^3); 其狀態轉移方程如下: map[i,j]:=min{map[i,k]+map[k,j],map[i,j]} map[i,j]表示i到j的最短距離 K是窮舉i,j的斷點 map[n,n]初值應該為0,或者按照題目意思來做。
當然,如果這條路沒有通的話,還必須特殊處理,比如沒有map[i,k]這條路
⑸ floyd演算法求最短路徑
Floyd演算法適用於APSP(AllPairsShortestPaths),是一種動態規劃演算法,稠密圖效果最佳,邊權可正可負。此演算法簡單有效,由於三重循環結構緊湊,對於稠密圖,效率要高於執行|V|次Dijkstra演算法。
優點:容易理解,可以算出任意兩個節點之間的最短距離,代碼編寫簡單
缺點:時間復雜度比較高,不適合計算大量數據。
時間復雜度:O(n^3);空間復雜度:O(n^2);
任意節點i到j的最短路徑兩種可能:
直接從i到j;
從i經過若干個節點k到j。
map(i,j)表示節點i到j最短路徑的距離,對於每一個節點k,檢查map(i,k)+map(k,j)小於map(i,j),如果成立,map(i,j) = map(i,k)+map(k,j);遍歷每個k,每次更新的是除第k行和第k列的數。
步驟:
第1步:初始化map矩陣。
矩陣中map[i][j]的距離為頂點i到頂點j的權值;
如果i和j不相鄰,則map[i][j]=∞。
如果i==j,則map[i][j]=0;
第2步:以頂點A(假設是第1個頂點)為中介點,若a[i][j] > a[i][1]+a[1][j],則設置a[i][j]=a[i][1]+a[1][j]。