導航:首頁 > 源碼編譯 > 演算法模式運用

演算法模式運用

發布時間:2023-05-22 13:39:28

⑴ 如何將數據結構和演算法應用到實際之中

寫一些程序,尤其是比較底層的程序。就明白它們的用處了。
列舉下我們當初的作業(其實是老師從UC Santa Barbara\UC Berkley CS作業直接來題目)
(1)實現一個簡單的 TCP 傳輸層的協議機制
自己去設計協議,不用照搬 RFC 的標准,其實就是數據結構的用場。
需要考慮到數據包丟失(Loss)、損壞(Corruption)、亂序(Disorder)這樣的情況。
(2)實現操作系統的虛擬內存機制(基於Nachos系統)
如何去設計頁表。如何使用置換演算法。以及應用程序請求頁的時候,發生缺頁,從而導致的中斷如何處理。
(3)實現一個簡單的編譯器(MiniJava)
詞法:字元串匹配,表達式求值 等演算法;
語法:生成抽象語法樹;
語義:採用適當的設計模式(Visitor)來生成語義表、字典、然後轉化為目標代碼(可以是匯編、或者是類似的 Three-Address Code)
如果以上三個任務都完成並搞懂了,那麼恭喜:你不僅掌握了數據結構、演算法,而且也學習了計算機網路、操作系統、編譯原理中大部分的知識。

⑵ 推薦演算法模型原則~運營推廣

網店運營:推薦演算法建模原理。
直通車,手淘搜索,手淘首頁推薦兩個核心原則:第一,標簽匹配度高優先,第二,權重高優先。
標簽匹配,有顧客標簽和寶貝標簽,顧客標簽包括瀏覽痕跡和購買記錄,有些顧客標簽比較模糊。嬰兒標簽包括成交記錄,顧客搜索你的嬰兒然後成交,顧客標簽和搜索關鍵字給嬰兒打標簽。
先基本加權店權,再基本加權點擊率、轉化率、坑產、評價。半標品基本是銷量權重越大越好。非標品的熱度權重較高。
總之,演算法模式在淘寶上都是為了使顧客能夠快速找到他們需要的產品,並獲得滿意的產品。還能使公司利潤最大化。很多商店不能做到這一點,是因為同行競爭太激烈,功夫再高也比不上菜刀。
網店運營中,如何做好主圖和直通車圖點擊率高。
淘寶店的運作。
銷售不到300的寶貝(對標同店銷售超過10000個),最好的辦法就是搞優惠活動。
然後是銷售300以上(對標同店最高1萬以上),方法二:
淘寶店的運作。
在同類公司中研究一下銷量前10名的主圖和他們的汽車圖,看看他們的汽車圖就知道了,汽車圖很費時找,再結合他們的優勢做主圖和車圖。
叫客服統計的客戶咨問做多了有什麼問題?把客戶關心的問題列出來,製作一個表格,統計15天的數據,找出三個客戶最關心的問題,然後把客戶關心的三個問題以圖表的形式展示出來,這樣就可以消除客戶關心的三個問題。

⑶ HFSS演算法及應用場景介紹

安氏

前言

相信每一位使用過HFSS的工程師都有一個疑問或者曾經有一個疑問:我怎麼才能使用HFSS計算的又快又准?對使用者而言,每個工程師遇到的工程問題不一樣,工程經驗不能夠直接復制;對軟體而言,隨著HFSS版本的更新,HFSS演算法越來越多,針對不同的應用場景對應不同的演算法。因此,只有實際工程問題切合合適的演算法,才能做到速度和精度的平衡。工程師在了解軟體演算法的基礎上,便能夠針對自己的需求進行很好的演算法選擇。

由於當今世界計算機的飛速發展,讓計算電磁學這門學科也有了很大的發展,如圖1所示,從大的方面來看,我們將計算電磁學分為精確的全波演算法和高頻近似演算法,在每一類下面又分了很多種演算法,結合到HFSS軟體,通過ANSYS公司40餘年來堅持不懈的研發和戰略性的收購,到目前為止,HFSS有FEM、IE(MoM)、DGTD、PO、SBR+等演算法,本文會針對每種演算法和應用場景逐一介紹,相信你看完這篇文章應該對HFSS演算法和應用場景會有更深的認識。

演算法介紹

全波演算法-有限元演算法( FEM)

有限元演算法是ANSYS HFSS的核心演算法,已有二十多年的商用歷史,也是目前業界最成熟穩定的三維電磁場求解器,有限元演算法的優點是具有極好的結構適應性和材料適應性,充分考慮材料特性:趨膚效應、介質損耗、頻變材料;是精確求解復雜材料復雜結構問題的最佳利器,有限元演算法採用四面體網格,對模擬物體能夠很好的進行還原。

FEM演算法的支配方程見下圖:

HFSS有限元演算法在網格劃分方面能夠支持自適應網格剖分、網格加密、曲線型網格,在求解時支持切向矢量基函數、混合階基函數和直接法、迭代法、區域分解法的強大的矩陣求解技術。

在應用領域,HFSS主要針對復雜結構進行求解,尤其是對於一些內部問題的求解,比高速信號完整性分析,陣列天線設計,腔體問題及電磁兼容等應用場景,非常適合有限元演算法求解。

有限元演算法結合ANSYS公司的HPC模塊,ANSYS HFSS有限元演算法可以進行電大尺寸物體的計算,大幅度提升模擬工程師的工作效率。針對寬頻問題,FEM推出了寬頻自適應網格剖分,大大提升了模擬精度。

全波演算法-積分方程演算法( IE)

積分方程演算法基於麥克斯維方程的積分形式,同時也基於格林函數,所以可自動滿足輻射邊界條件,對於簡單模型及材料的輻射問題,具有很大的優勢,但原始的積分方程法計算量太大,很難用於實際的數值計算中,針對此問題, HFSS 中的 IE演算法提供了兩種加速演算法,一種是 ACA 加速,一種是 MLFMM,分布針對不同的應用類型。 ACA 方法基於數值層面的加速技術,具有更好的普適性,但效率相比 MLFMM 稍差, MLFMM 演算法基於網格層面的加速,對金屬材料,鬆散結構,具有更高的效率。

IE演算法的支配方程見下圖:

IE演算法是三維矩量法積分方程技術,支持三角形網格剖分。IE演算法不需要像FEM演算法一樣定義輻射邊界條件,在HFSS中主要用於高效求解電大尺寸、開放結構問題。與HFSS FEM演算法一樣,支持自適應網格技術,也可以高精度、高效率解決客戶問題,同時支持將FEM的場源鏈接到IE中進行求解。HFSS-IE演算法對金屬結構具有很高的適應性,其主要應用領域天線設計、天線布局、 RCS、 EMI/EMC模擬等方向。

高頻近似演算法-PO演算法

FEM演算法和IE演算法是精確的全波演算法,在超大電尺寸問題上,使用精確全波演算法會造成效率的降低。針對超大電尺寸問題,ANSYS推出PO(物理光學法)演算法,PO 演算法屬於高頻演算法,非常適合求解此類問題,在適合其求解的問題中,具有非常好的效率優勢。

PO演算法主要原理為射線照射區域產生感應電流,而且在陰影區域設置為零電流,不考慮射線追跡或多次反射,以入射波作為激勵源,將平面波或鏈接FEM(IE)的場數據作為饋源。但由於不考慮射線的多次反射和繞射等現象,一般針對物理尺寸超大,結構均勻的物體電磁場計算,在滿足精度的要求,相比全波演算法效率明顯提高。比如大平台上的天線布局,大型反射面天線等等。

高頻近似演算法-SBR+演算法

PO演算法可以解決超大電尺寸問題的計算,但由於未考慮到多次反射等物理物體,主要用於結構均勻物理的電磁場計算。針對復雜結構且超大電尺寸問題,ANSYS通過收購Delcross公司(Savant軟體)引入了SBR+演算法, SBR+是在SBR演算法(天線發射出射線,在表面「繪制」 PO電流)的基礎上考慮了爬行波射線(沿著表面追跡射線)、物理繞射理論PTD(修正邊緣處的PO電流)、一致性繞射理論UTD(沿著邊緣發射衍射射線,繪制陰影區域的電流),因此SBR+演算法是高頻射線方法,具有非常高效的速度,同時具有非常好的精度,在大型平台的天線布局中效果非常好。

SBR+支持從FEM、IE中導入遠場輻射方向圖或者電流源,也支持導入相應的測試數據,SBR+演算法主要用於天線安裝分析,支持多核、GPU等並行求解方式並且大多數任務可在低於8 GB內存下完成。

混合演算法( FEBI, IE-Region,PO-Region,SBR+ Region)

前面對頻率內的各種演算法做了介紹並說明了各種演算法應用的場景,很多時候碰到的工程問題既包括復雜結構物理也包括超大尺寸物理,如新能源汽車上的天線布局問題,對模擬而言,最好的精度是用全波演算法求解,最快的速度是採用近似算求解,針對該問題,ANSYS公司將FEM演算法、 IE 演算法、PO 演算法、SBR+演算法等融合起來,推出混合演算法。在一個應用案例中,採用不同演算法的優點而迴避不同演算法的缺點,可極大限度的提高演算法的效率,以及成為頻域內解決大型復雜問題的必備演算法。

HFSS中FEM與IE可以通過IE Region與FEBI邊界進行混合求解,FEM與PO、SBR+演算法可以通過添加PO Region及SBR+ Region進行混合,混合演算法的使用擴大了HFSS的使用范圍。

時域演算法-transient演算法

HFSS時域求解是基於間斷伽略金法(discontinuous Galerkin method, DGTD)的三維全波電磁場模擬求解器,採用基於四面體有限元技術,能得到和HFSS頻域求解器一樣的自適應網格剖分精度,該技術使得HFSS的求精精度成為電磁場行業標准。這項技術完善了HFSS的頻域求解器技術,幫助工程師對更加深入詳細了解其所設計器件的電磁性能。

Transient演算法支配方程見下圖:

採用HFSS-Transient演算法,工程師可利用短脈沖激勵對靜電放電、電磁干擾、雷擊和等應用問題開展研究,還包括時域反射阻抗以及短時激勵下的瞬態場顯示也可以藉助它來完成。

諧振分析-Eigenmode演算法

諧振特性是每個結構都存在固有的電磁諧振,諧振的模式、頻率和品質因子,與其結構尺寸相關,這些諧振既可能是干擾源的放大器,也可能是敏感電路的雜訊接收器。諧振會導致信號完整性、電源完整性和電磁兼容問題,因而了解諧振對加強設計可靠性很有幫助。

Eigenmode演算法支配方程見下圖:

在HFSS中,使用eigenmode演算法可計算三維結構諧振模式,並可呈現圖形化空間的諧振電壓波動,分析結構的固有諧振特性。依據諧振分析的結果,指導機箱內設備布局和PCB層疊布局,改善電磁兼容特性。

總結

HFSS裡面有各種不同的演算法,有全波演算法、近似演算法以及時域演算法,工程師可以格局需要選擇不同演算法(最高的精度和最高的效率)。首先針對頻域演算法,使用范圍見圖14,通常FEM演算法和IE演算法非常適合於中小尺寸問題,對大型問題,FEM/IE運行時間/內存需求非常巨大; PO方法適合解決超大電尺寸問題,但對問題復雜度有限制,通常通常不能提供客戶所期望的精度,但對於均勻物體是一個很好的選擇;SBR+演算法適合解決超大電尺寸問題,對復雜結構也能夠提供很好的精度和速度;針對既有電小尺寸復雜結構計算問題,又有電大尺寸布局計算問題,混合演算法是一個很好的選擇。Transient演算法適合解決與時間相關的電磁場問題,如ESD、TDR等;Eigenmode演算法專門針對諧振模擬。

想要更多,點擊此處,關注技術鄰官網

⑷ 對稱加密演算法的應用模式

加密模式(英文名稱及簡寫) 中文名稱 Electronic Code Book(ECB) 電子密碼本模式 Cipher Block Chaining(CBC) 密碼分組鏈接模式 Cipher Feedback Mode(CFB) 加密反饋模式 Output Feedback Mode(OFB) 輸出反饋模式 ECB:最基本的加密模式,也就是通常理解的加密,相同的明文將永遠加密成相同的密文,無初始向量,容易受到密碼本重放攻擊,一般情況下很少用。
CBC:明文被加密前要與前面的密文進行異或運算後再加密,因此只要選擇不同的初始向量,相同的密文加密後會形成不同的喊空密文,這是目前應用最廣泛的模式。CBC加密後的密文是上下文相關的,但明文的錯誤不會傳遞到後續分組,但如果一個分組丟失,後面的分組將全部作廢(同步錯誤)。
CFB:類似於自同步序列密碼,分組加密後,按8位分組將密文和明文進行移位異或後得到輸出同時反饋回移位寄存器,優點最小可以按位元組進行加解納洞密,也可以是n位的,CFB也是上下文相關的,CFB模式下,明文的一個鄭茄瞎錯誤會影響後面的密文(錯誤擴散)。
OFB:將分組密碼作為同步序列密碼運行,和CFB相似,不過OFB用的是前一個n位密文輸出分組反饋回移位寄存器,OFB沒有錯誤擴散問題。

⑸ 求大神簡述一下LLE演算法(或降維演算法)在模式識別和數據挖掘中是怎樣被應用的呢,謝謝

  1. 關於LLE演算法具體的理論部分你可參考http://www.pami.sjtu.e.cn/people/xzj/introcelle.htm

  2. Locally linear embedding (LLE),使用這種演算法可以進行非線性降維,關鍵是其能夠使降維後的數據保持原有拓撲結構

    先給出一張下面演算法得到的圖 ,圖中第一幅

    LLE演算法可以歸結為三步:

    (1)尋找每個樣本點的k個近鄰點;

    (2)由每個樣本點的近鄰點計算出該樣本點的局部重建權值矩陣;

    (3)由該樣本點的局部重建權值矩陣和其近鄰點計算出該樣本點的輸出值。

  3. 為原始數據,第三個為降維後的數據,可以看出處理後的低維數據保持了原有的拓撲結構。

  4. 另,本人對LLE演算法不是很熟悉,在此介紹一下其他降維演算法的使用,以SVD演算法為例。

    電影推薦。

    (1)假設現在有一個用戶和電影評分的二維矩陣,矩陣內容是用戶對電影的評分,現有得知某個用戶對部分電影的評分,由此為該用戶推薦他可能喜歡的電影。

    (2)假設用戶有100W,電影有100W部,那麼對於任意一種推薦演算法來說,這個數據量都很大,該問題無法在單機上進行運算解決;

    (3)這100W維特徵中必然存在一些幾乎不重要的特徵,這時,我們就需要用降維演算法進行降維,降維的目的就是去掉大量的不重要的特徵,以簡化運算;

    (4)在此例中,可以使用SVD(或SVD++)演算法對矩陣進行降維

圖片相似度

(1)通常,進行圖片相似度判斷首先會將圖片通過傅里葉變換轉換成數值代表的矩陣,矩陣代表著該圖片,一般來說矩陣維數越高越精確

(2)同樣,維數過高的情況下,相似度計算成本很高,因此同樣需要降維,在圖片相似度識別中常用的降維演算法是PCA演算法;


總之,降維的目的就是減少特徵的維數,減少運算的成本。

以上皆為我的拙見,如有疑義請指正。

⑹ 字元串匹配演算法的使用(未完待整理)

字元串的匹配在Java中都知道使用indexOf函數來實現,那麼其匹配演算法是怎麼樣的呢?

單模式和多模式的區別就是一次遍歷主串能否將多個模式的字元串都查找出來。

英文全稱為Brute Force,暴力匹配演算法,匹配字元串的方法比較暴力,也比較簡單易懂。其大概的思路就是:

我們可以看到,在極端情況下,在主串 aaaa...aab 中尋找模式串 aab ,那麼總共需要尋找(n-m+1)次,且每次都需要比對m次,那麼時間復雜度將是 (n-m+1)*m ,即 O(n*m) ;但實際上並不會這么低效,因為我們的使用場景中主串和模式串都不會太長,而且在每個子串和模式串進行比對時,只要中途有一個不匹配,那麼當前比對就會提前結束,因此大部分情況下,時間復雜度都會比 O(n*m) 要好。

我們在BF演算法的基礎上引入哈希演算法,我們不需要將每個子串與模式串逐個字元地進行比較,而是計算得出每個子串的hash值,然後和模式串的hash值進行比較,如果有相等的,那就說明有子串和模式串匹配上了。

雖然我們只需要比對模式串和子串的hash值就能得到匹配結果,次數為(n-m+1),但是對每個子串進行hash計算的時候,是要遍歷每個字元的,因此次數也是m,那麼總的時間復雜度還是 O(n*m) ,並沒有明顯地提升。

那麼我們該如何想出一個辦法,使得每個子串hash值的計算時間得到提升呢?這就是RK演算法的精髓,假設子串包含的字元集中元素個數為k,那麼就用k進制數來代表這個子串,然後hash的過程就是將這個k進制的數轉換為十進制的數,這個十進制的數就是該子串的hash值。

相鄰子串的hash值計算是有規律的,我們只需要遍歷一次主串就能得到所有子串的hash值,演算法復雜度為O(n),而不是像原先一樣,每個子串都需要O(m)的時間復雜度。

然後將模式串的hash值和所有子串的hash值進行比較,每次比較的時間復雜度是 O(1) ,總共比較(n-m+1)次,所以RK演算法的總的時間開銷為 O(n)+O(1)*O(n-m+1) ,即為 O(n) ,時間復雜度比BF演算法更加高效。

當然,有hash的地方就有可能會存在hash沖突,有可能子串和hash值和模式串的hash值是一樣的,但內容就是不一樣,此時怎麼辦呢?其實很簡單,對於hash值一樣的子串,我們增加雙保險,再比較一下這m個字元是否都一樣即可,總的時間開銷為 O(n)+O(1)*O(n-m+1)+O(m) ,即為 O(n) 。

如果極端情況下出現了很多hash沖突呢?我們對於每個和模式串相同hash值的子串都需要逐一再進行比較,那麼總的時間開銷就會為 O(n)+O(1)*O(n-m+1)+O(m)*O(n-m+1) ,即為 O(n*m) ,不過這種概率太小了,大部分情況下都不會這樣。

在真正的文本編輯器中查找和替換某個字元串時,使用的演算法既不是上述的BF演算法,也不是RK演算法;BF演算法只適合不是很長的主串,RK演算法則要設計一個沖突概率很低的hash演算法,這個比較困難,所以實際使用的是BM演算法,它是工程中非常常用的一種字元串匹配演算法,效率也是最高的。

演算法的思想和過程有些復雜,待以後整理。

KMP演算法在本質上是和BM演算法一樣的。演算法的思想和過程有些復雜,待以後整理。

瀏覽器輸入框中的智能輸入匹配是怎麼實現的,它是怎麼做動態字元串匹配查找的呢?這就用到了Trie樹。

又名字典樹,是一種專門用來快速查找字元串前綴匹配結果的樹形結構,其本質就是將所有字元串的重復的前綴合並在一起,構造一個多叉樹。

其中,根節點不包含任何信息,每個節點表示一個字元,從根節點到紅色節點的一條路徑表示存儲的一個字元串。當我們在如上Trie樹中查找"he"時,發現"he"並非是一個字元串,而是"hello"和"her"的公共前綴,那麼就會找到這兩個字元串返回。

Trie樹在內存中是如何存儲的呢?因為每一個節點都可能是包含所有字元的,所以每一個節點都是一個數組(或者散列表),用來存儲每個字元及其後綴節點的指針。

使用Trie樹,最開始構建的時候,時間復雜度為 O(n) ,其中n為所有字元串長度之和,但是一旦構建完成,頻繁地查詢某個字元串是非常高效的,時間復雜度為 O(k) ,其中k為查找字元串的長度。

Trie樹雖然查詢效率很高,但是比較浪費內存,每一個節點都必須維護一個數組存放所有可能的字元數據及其指向下一個節點的指針,因此在所有字元串公共前綴並不多的時候,內存空間浪費地就更多了。這種問題其實也有對應的解決辦法,我們可以不使用數組,而是使用有序數組、散列表、紅黑樹來存放,可以相應地降低性能來節省內存空間。

Trie樹除了可以實現瀏覽器動態輸入內容查找候選項的功能外,還可以實現多模式地敏感詞匹配功能。假設我們需要對用戶輸入的內容進行敏感詞檢查,將所有的敏感內容用***代替,那麼該如何實現呢?

首先我們可以維護一個敏感詞字典,使用上述四種單模式匹配演算法也可以實現,但是需要遍歷N次用戶輸入的內容,其中N是所有敏感詞的模式串,顯得非常低效。但是我們如果將敏感詞字典維護為一個Trie樹,然後將用戶輸入的內容從位置0開始在Trie樹中進行查詢,如果匹配到紅色節點,那麼說明有敏感詞;如果沒有匹配到紅色節點,就從用戶輸入內容的下一個位置開始繼續在Trie樹中查詢,直至將用戶輸入內容遍歷完,因此我們只是遍歷了一遍主串。

然而更高效的多模式字元串匹配使用地更多的是如下的AC自動機。

如果把Trie樹比作BF演算法,KMP演算法是BF演算法的改進,那麼AC自動機就是利用同樣的思想改進了Trie樹。

演算法的思想和過程有些復雜,待以後整理。

⑺ 神經網路演算法的優勢與應用

人工神經網路(ANN)以大腦處理機製作為基礎,開發用於建立復雜模式和預測問題的演算法。

首先了解大腦如何處理信息:
在大腦中,有數億個神經元細胞,以電信號的形式處理信息。外部信息或者刺激被神經元的樹突接收,在神經元細胞體中處理,轉化成輸出並通過軸突,傳遞到下一個神經元。下一個神經元可以選擇接受它或拒絕它,這取決於信號的強度。

[圖片上傳失敗...(image-cc0d9d-1512012156403)]

現在,讓我們嘗試了解 ANN 如何工作:

這里, $w_1$ , $w_2$ , $w_3$ 給出輸入信號的強度

從上面可以看出,ANN 是一個非常簡單的表示大腦神經元如何工作的結構。

為了使事情變得更清晰,用一個簡單的例子來理解 ANN:一家銀行想評估是否批准貸款申請給客戶,所以,它想預測一個客戶是否有可能違約貸款。它有如下數據:

所以,必須預測列 X。更接近 1 的預測值表明客戶更可能違約。

基於如下例子的神經元結構,嘗試創建人造神經網路結構:

通常,上述示例中的簡單 ANN 結構可以是:

[圖片上傳失敗...(image-1b4516-1512012156403)]

ANN 有一些關鍵優勢,使它們最適合某些問題和情況:

ANN 是具有廣泛應用的強大的模型。以上列舉了幾個突出的例子,但它們在醫葯、安全、銀行、金融、政府、農業和國防等領域有著廣泛的應用。

⑻ 聚類演算法的演算法用途

聚類的用途是很廣泛的。
在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。
聚類分析的演算法可以分為劃分法(Partitioning Methods)、層次法(Hierarchical Methods)、基於密度的方法(density-based methods)、基於網格的方法(grid-based methods)、基於模型的方法(Model-Based Methods)。

閱讀全文

與演算法模式運用相關的資料

熱點內容
oppp手機信任app在哪裡設置 瀏覽:183
java地址重定向 瀏覽:268
一年級下冊摘蘋果的演算法是怎樣的 瀏覽:448
程序員出軌電視劇 瀏覽:88
伺服器系統地址怎麼查 瀏覽:54
解壓游戲發行官 瀏覽:601
國外小伙解壓實驗 瀏覽:336
頂級大學開設加密貨幣 瀏覽:437
java重載與多態 瀏覽:528
騰訊應屆程序員 瀏覽:942
一鍵編譯程序 瀏覽:129
語音加密包哪個好 瀏覽:339
有什麼學習高中語文的app 瀏覽:282
安卓手機的表格里怎麼打勾 瀏覽:409
阿里雲伺服器有網路安全服務嗎 瀏覽:968
超解壓兔子視頻 瀏覽:24
單片機怎麼測負脈沖 瀏覽:174
魅族備份的app在哪裡 瀏覽:740
java倒三角列印 瀏覽:115
通達信回封板主圖源碼 瀏覽:46