A. matlab floyd 演算法注釋
A矩陣是鄰接矩陣,對角線上為o,其餘位置數字表示的是兩點之間距離,比如A(1,2)=2,表示從第一個點到第二個點的距離為2.inf是無窮大的意思,這里表示沒有直接溝通這兩點的路。
n=length(D);設定n為D矩陣的長度。
接下來的兩重循環,得到的R矩陣是n*n的矩陣,它每個數據表示的是路徑,比如:R(1,3)=1;表示路徑為:1-1-3.這里是初始化路徑了。
後面的三重循環是floyd演算法的關鍵所在,就是更新路線了。裡面的那個判斷指的是:
假設有3個點,1
2
3;如果我從1-2-3之間總距離小於1-3的距離,那麼我R(1,3)=2;這就是選取更近的路線了。
最後的兩個判斷是為了不讓曾經走過的點再次被遍歷。就是不回頭的意思了,這個一般都可以忽略了,你照打上去就是了。
不知道這樣的解釋你是否滿意。
B. md5 演算法程序+詳細注釋,高分求教!
MD5加密演算法簡介
一、綜述
MD5的全稱是message-digest algorithm 5(信息-摘要演算法),在90年代初由mit laboratory for computer science和rsa data security inc的ronald l. rivest開發出來,經md2、md3和md4發展而來。它的作用是讓大容量信息在用數字簽名軟體簽署私人密匙前被"壓縮"成一種保密的格式(就是把一 個任意長度的位元組串變換成一定長的大整數)。不管是md2、md4還是md5,它們都需要獲得一個隨機長度的信息並產生一個128位的信息摘要。雖然這些 演算法的結構或多或少有些相似,但md2的設計與md4和md5完全不同,那是因為md2是為8位機器做過設計優化的,而md4和md5卻是面向32位的電 腦。這三個演算法的描述和c語言源代碼在internet rfcs 1321中有詳細的描述(http://www.ietf.org/rfc/rfc1321.txt),這是一份最權威的文檔,由ronald l. rivest在1992年8月向ieft提交。
rivest在1989年開發出md2演算法。在這個演算法中,首先對信 息進行數據補位,使信息的位元組長度是16的倍數。然後,以一個16位的檢驗和追加到信息末尾。並且根據這個新產生的信息計算出散列值。後來,rogier 和chauvaud發現如果忽略了檢驗和將產生md2沖突。md2演算法的加密後結果是唯一的--既沒有重復。
為了加強演算法的安全性, rivest在1990年又開發出md4演算法。md4演算法同樣需要填補信息以確保信息的位元組長度加上448後能被512整除(信息位元組長度mod 512 = 448)。然後,一個以64位二進製表示的信息的最初長度被添加進來。信息被處理成512位damg?rd/merkle迭代結構的區塊,而且每個區塊要 通過三個不同步驟的處理。den boer和bosselaers以及其他人很快的發現了攻擊md4版本中第一步和第三步的漏洞。dobbertin向大家演示了如何利用一部普通的個人電 腦在幾分鍾內找到md4完整版本中的沖突(這個沖突實際上是一種漏洞,它將導致對不同的內容進行加密卻可能得到相同的加密後結果)。毫無疑問,md4就此 被淘汰掉了。
盡管md4演算法在安全上有個這么大的漏洞,但它對在其後才被開發出來的好幾種信息安全加密演算法的出現卻有著不可忽視的引導作用。除了md5以外,其中比較有名的還有sha-1、ripe-md以及haval等。
一年以後,即1991年,rivest開發出技術上更為趨近成熟的md5演算法。它在md4的基礎上增加了"安全-帶子"(safety-belts)的 概念。雖然md5比md4稍微慢一些,但卻更為安全。這個演算法很明顯的由四個和md4設計有少許不同的步驟組成。在md5演算法中,信息-摘要的大小和填充 的必要條件與md4完全相同。den boer和bosselaers曾發現md5演算法中的假沖突(pseudo-collisions),但除此之外就沒有其他被發現的加密後結果了。
van oorschot和wiener曾經考慮過一個在散列中暴力搜尋沖突的函數(brute-force hash function),而且他們猜測一個被設計專門用來搜索md5沖突的機器(這台機器在1994年的製造成本大約是一百萬美元)可以平均每24天就找到一 個沖突。但單從1991年到2001年這10年間,竟沒有出現替代md5演算法的md6或被叫做其他什麼名字的新演算法這一點,我們就可以看出這個瑕疵並沒有 太多的影響md5的安全性。上面所有這些都不足以成為md5的在實際應用中的問題。並且,由於md5演算法的使用不需要支付任何版權費用的,所以在一般的情 況下(非絕密應用領域。但即便是應用在絕密領域內,md5也不失為一種非常優秀的中間技術),md5怎麼都應該算得上是非常安全的了。
二、演算法的應用
md5的典型應用是對一段信息(message)產生信息摘要(message-digest),以防止被篡改。比如,在unix下有很多軟體在下載的時候都有一個文件名相同,文件擴展名為.md5的文件,在這個文件中通常只有一行文本,大致結構如:
md5 (tanajiya.tar.gz) =
這就是tanajiya.tar.gz文件的數字簽名。md5將整個文件當作一個大文本信息,通過其不可逆的字元串變換演算法,產生了這個唯一的md5信 息摘要。如果在以後傳播這個文件的過程中,無論文件的內容發生了任何形式的改變(包括人為修改或者下載過程中線路不穩定引起的傳輸錯誤等),只要你對這個 文件重新計算md5時就會發現信息摘要不相同,由此可以確定你得到的只是一個不正確的文件。如果再有一個第三方的認證機構,用md5還可以防止文件作者的 "抵賴",這就是所謂的數字簽名應用。
md5還廣泛用於加密和解密技術上。比如在unix系統中用戶的密碼就是以md5(或其它類似的算 法)經加密後存儲在文件系統中。當用戶登錄的時候,系統把用戶輸入的密碼計算成md5值,然後再去和保存在文件系統中的md5值進行比較,進而確定輸入的 密碼是否正確。通過這樣的步驟,系統在並不知道用戶密碼的明碼的情況下就可以確定用戶登錄系統的合法性。這不但可以避免用戶的密碼被具有系統管理員許可權的 用戶知道,而且還在一定程度上增加了密碼被破解的難度。
正是因為這個原因,現在被黑客使用最多的一種破譯密碼的方法就是一種被稱為"跑字 典"的方法。有兩種方法得到字典,一種是日常搜集的用做密碼的字元串表,另一種是用排列組合方法生成的,先用md5程序計算出這些字典項的md5值,然後 再用目標的md5值在這個字典中檢索。我們假設密碼的最大長度為8位位元組(8 bytes),同時密碼只能是字母和數字,共26+26+10=62個字元,排列組合出的字典的項數則是p(62,1)+p(62,2)….+p (62,8),那也已經是一個很天文的數字了,存儲這個字典就需要tb級的磁碟陣列,而且這種方法還有一個前提,就是能獲得目標賬戶的密碼md5值的情況 下才可以。這種加密技術被廣泛的應用於unix系統中,這也是為什麼unix系統比一般操作系統更為堅固一個重要原因。
三、演算法描述
對md5演算法簡要的敘述可以為:md5以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。
在md5演算法中,首先需要對信息進行填充,使其位元組長度對512求余的結果等於448。因此,信息的位元組長度(bits length)將被擴展至n*512+448,即n*64+56個位元組(bytes),n為一個正整數。填充的方法如下,在信息的後面填充一個1和無數個 0,直到滿足上面的條件時才停止用0對信息的填充。然後,在在這個結果後面附加一個以64位二進製表示的填充前信息長度。經過這兩步的處理,現在的信息字 節長度=n*512+448+64=(n+1)*512,即長度恰好是512的整數倍。這樣做的原因是為滿足後面處理中對信息長度的要求。
md5中有四個32位被稱作鏈接變數(chaining variable)的整數參數,他們分別為:a=0x01234567,b=0x89abcdef,c=0xfedcba98,d=0x76543210。
當設置好這四個鏈接變數後,就開始進入演算法的四輪循環運算。循環的次數是信息中512位信息分組的數目。
將上面四個鏈接變數復制到另外四個變數中:a到a,b到b,c到c,d到d。
主循環有四輪(md4隻有三輪),每輪循環都很相似。第一輪進行16次操作。每次操作對a、b、c和d中的其中三個作一次非線性函數運算,然後將所得結 果加上第四個變數,文本的一個子分組和一個常數。再將所得結果向右環移一個不定的數,並加上a、b、c或d中之一。最後用該結果取代a、b、c或d中之 一。
以一下是每次操作中用到的四個非線性函數(每輪一個)。
f(x,y,z) =(x&y)|((~x)&z)
g(x,y,z) =(x&z)|(y&(~z))
h(x,y,z) =x^y^z
i(x,y,z)=y^(x|(~z))
(&是與,|是或,~是非,^是異或)
這四個函數的說明:如果x、y和z的對應位是獨立和均勻的,那麼結果的每一位也應是獨立和均勻的。
f是一個逐位運算的函數。即,如果x,那麼y,否則z。函數h是逐位奇偶操作符。
假設mj表示消息的第j個子分組(從0到15),
<< ff(a,b,c,d,mj,s,ti) 表示 a=b+((a+(f(b,c,d)+mj+ti)
<< gg(a,b,c,d,mj,s,ti) 表示 a=b+((a+(g(b,c,d)+mj+ti)
<< hh(a,b,c,d,mj,s,ti) 表示 a=b+((a+(h(b,c,d)+mj+ti)
<< ii(a,b,c,d,mj,s,ti) 表示 a=b+((a+(i(b,c,d)+mj+ti)
<< 這四輪(64步)是:
第一輪
ff(a,b,c,d,m0,7,0xd76aa478)
ff(d,a,b,c,m1,12,0xe8c7b756)
ff(c,d,a,b,m2,17,0x242070db)
ff(b,c,d,a,m3,22,0xc1bdceee)
ff(a,b,c,d,m4,7,0xf57c0faf)
ff(d,a,b,c,m5,12,0x4787c62a)
ff(c,d,a,b,m6,17,0xa8304613)
ff(b,c,d,a,m7,22,0xfd469501)
ff(a,b,c,d,m8,7,0x698098d8)
ff(d,a,b,c,m9,12,0x8b44f7af)
ff(c,d,a,b,m10,17,0xffff5bb1)
ff(b,c,d,a,m11,22,0x895cd7be)
ff(a,b,c,d,m12,7,0x6b901122)
ff(d,a,b,c,m13,12,0xfd987193)
ff(c,d,a,b,m14,17,0xa679438e)
ff(b,c,d,a,m15,22,0x49b40821)
第二輪
gg(a,b,c,d,m1,5,0xf61e2562)
gg(d,a,b,c,m6,9,0xc040b340)
gg(c,d,a,b,m11,14,0x265e5a51)
gg(b,c,d,a,m0,20,0xe9b6c7aa)
gg(a,b,c,d,m5,5,0xd62f105d)
gg(d,a,b,c,m10,9,0x02441453)
gg(c,d,a,b,m15,14,0xd8a1e681)
gg(b,c,d,a,m4,20,0xe7d3fbc8)
gg(a,b,c,d,m9,5,0x21e1cde6)
gg(d,a,b,c,m14,9,0xc33707d6)
gg(c,d,a,b,m3,14,0xf4d50d87)
gg(b,c,d,a,m8,20,0x455a14ed)
gg(a,b,c,d,m13,5,0xa9e3e905)
gg(d,a,b,c,m2,9,0xfcefa3f8)
gg(c,d,a,b,m7,14,0x676f02d9)
gg(b,c,d,a,m12,20,0x8d2a4c8a)
第三輪
hh(a,b,c,d,m5,4,0xfffa3942)
hh(d,a,b,c,m8,11,0x8771f681)
hh(c,d,a,b,m11,16,0x6d9d6122)
hh(b,c,d,a,m14,23,0xfde5380c)
hh(a,b,c,d,m1,4,0xa4beea44)
hh(d,a,b,c,m4,11,0x4bdecfa9)
hh(c,d,a,b,m7,16,0xf6bb4b60)
hh(b,c,d,a,m10,23,0xbebfbc70)
hh(a,b,c,d,m13,4,0x289b7ec6)
hh(d,a,b,c,m0,11,0xeaa127fa)
hh(c,d,a,b,m3,16,0xd4ef3085)
hh(b,c,d,a,m6,23,0x04881d05)
hh(a,b,c,d,m9,4,0xd9d4d039)
hh(d,a,b,c,m12,11,0xe6db99e5)
hh(c,d,a,b,m15,16,0x1fa27cf8)
hh(b,c,d,a,m2,23,0xc4ac5665)
第四輪
ii(a,b,c,d,m0,6,0xf4292244)
ii(d,a,b,c,m7,10,0x432aff97)
ii(c,d,a,b,m14,15,0xab9423a7)
ii(b,c,d,a,m5,21,0xfc93a039)
ii(a,b,c,d,m12,6,0x655b59c3)
ii(d,a,b,c,m3,10,0x8f0ccc92)
ii(c,d,a,b,m10,15,0xffeff47d)
ii(b,c,d,a,m1,21,0x85845dd1)
ii(a,b,c,d,m8,6,0x6fa87e4f)
ii(d,a,b,c,m15,10,0xfe2ce6e0)
ii(c,d,a,b,m6,15,0xa3014314)
ii(b,c,d,a,m13,21,0x4e0811a1)
ii(a,b,c,d,m4,6,0xf7537e82)
ii(d,a,b,c,m11,10,0xbd3af235)
ii(c,d,a,b,m2,15,0x2ad7d2bb)
ii(b,c,d,a,m9,21,0xeb86d391)
常數ti可以如下選擇:
在第i步中,ti是4294967296*abs(sin(i))的整數部分,i的單位是弧度。(4294967296等於2的32次方)
所有這些完成之後,將a、b、c、d分別加上a、b、c、d。然後用下一分組數據繼續運行演算法,最後的輸出是a、b、c和d的級聯。
當你按照我上面所說的方法實現md5演算法以後,你可以用以下幾個信息對你做出來的程序作一個簡單的測試,看看程序有沒有錯誤。
md5 ("") =
md5 ("a") =
md5 ("abc") =
md5 ("message digest") =
md5 ("abcdefghijklmnopqrstuvwxyz") =
md5 ("") =
md5 ("1234567890") =
如果你用上面的信息分別對你做的md5演算法實例做測試,最後得出的結論和標准答案完全一樣,那我就要在這里象你道一聲祝賀了。要知道,我的程序在第一次編譯成功的時候是沒有得出和上面相同的結果的。
四、MD5的安全性
md5相對md4所作的改進:
1. 增加了第四輪;
2. 每一步均有唯一的加法常數;
3. 為減弱第二輪中函數g的對稱性從(x&y)|(x&z)|(y&z)變為(x&z)|(y&(~z));
4. 第一步加上了上一步的結果,這將引起更快的雪崩效應;
5. 改變了第二輪和第三輪中訪問消息子分組的次序,使其更不相似;
6. 近似優化了每一輪中的循環左移位移量以實現更快的雪崩效應。各輪的位移量互不相同。
C. 《演算法導論》(原書第二版)。這本書裡面的程序是用什麼寫的是java嗎
這本書的程序是用偽代碼加英文注釋寫的,學過C/C++/JAVA的都能看懂。
原書摘錄如下(快速排序):
QUICKSORT'(A,p,r)
while p<r
do △ Partition and sort left subarray.
q <- PARTITION(A,p,r)
QUICKSORT'(A,p,q-1)
p <- q+1
D. 請幫忙簡述一下演算法的功能。
void BB(LNode *s, LNode *q)
{
p=s; //將結點s賦給p
while(p->next!=q) //當p的下個結點不與q相等時,執行循環
p=p->next;
//這句是循環體,將p後移,然後再執行循環判斷語句,直到p的下個結點與q相等結束
//其實整個循環的作用就是在鏈表中從結點s的下個結點開始找到第一個與q相等的結點
p->next=s; //用s替換那個與q相等的結點
}//BB
void AA (LNode *pa, LNode *pb)
{//pa和pb分別指向單循環鏈表中的兩個結點
BB(pa,pb); //用pa替換掉從pa指向的下個節點開始找到的第一個與pb相等的節點
//這時pb的值不一定會變,因為被替代的那個結點不一定是原來的pb
BB(pb,pa); //然後再用pb替換掉從pb指向的下個結點開始找到的第一個與pa相等的結點
}//AA
如果這個單循環鏈表中的所有結點都不相等的話,並假定pa在pb前面,那麼AA作用就是先用pa替換pb,這時pb就變為了pa,然後循環一圈後又找到pa用pb(其實就是pa)替換掉pa.
pa在pb後面一樣的,因為是循環.
E. 迷宮問題詳細的演算法或Pascal程序帶注釋
Dinic演算法的思想是為了減少增廣次數,建立一個輔助網路L,L與原網路G具有相同的節點數,但邊上的容量有所不同,在L上進行增廣,將增廣後的流值回寫到原網路上,再建立當前網路的輔助網路,如此反復,達到最大流。分層的目的是降低尋找增廣路的代價。
演算法步驟如下:
STEP1:建造原網路G的一個分層網路L。
STEP2:用增廣路演算法計算L的最大流F,若在L中找不到增廣路,演算法結束。
SETP3:根據F更新G中的流f,轉STEP1。
分層網路的構造演算法:
STEP1:標號源節點s,M[s]=0。
STEP2:調用廣度優先遍歷演算法,執行一步遍歷操作,當前遍歷的弧e=v1v2,令r=G.u(e)-G.f(e)。
若r>0,則
(1) 若M[v2]還沒有遍歷,則M[v2]=M[v1]+1,且將弧e加入到L中,容量L.u(e)=r。
(2) 若M[v2]已經遍歷且M[v2]=M[v1]+1,則將邊e加入到L中,容量L.u(e)=r。
(3) 否則L.u(e)=0。
否則L.u(e)=0。
重復本步直至G遍歷完。其中的G.u(e)、G.f(e)、L.u(e)分別表示圖G中弧e的容量上界和當前流量,圖L中弧e的容量上界。
下附程序 (鄰接表的程序,希望看得懂)
Program zw_dinicc;
type
o=record
point,next,c:longint;
end;
Var
i,j,k,p,n,m,head,tail,s,t,tot,a1,a2,a3,tot1,a4:longint;
h,l:array[1..55002]of longint;
first:array[1..55002]of longint;
e:array[1..310002] of o;
procere add(a,b,c:longint);
begin
e[tot1].point:=b; e[tot1].next:=first[a]; e[tot1].c:=c; first[a]:=tot1; inc(tot1);
end;
procere init;
var i,x,y,q:longint;
begin
tot1:=2;
readln(n,m);
for i:=m+2 to n+m+1 do
begin
read(a1);
add(i,n+m+2,a1);
add(n+m+2,i,0);
end;
for i:=2 to m+1 do
begin
read(a1,a2,a3);
add(i,1+m+a1,65536000); add(1+m+a1,i,0);
add(i,1+m+a2,65536000); add(1+m+a2,i,0);
add(1,i,a3);add(i,1,0);
inc(j,a3);
end;
n:=2+m+n;
s:=1;
t:=n;
end;
//以上為建邊,用的是殘量網路
procere bfs;{構建分層圖,從原點開始廣搜}
var
i,j,k,now:longint;
begin
head:=1; tail:=1; l[head]:=s; fillchar(h,sizeof(h),127); h[s]:=0;
while head<= tail do
begin
now:=l[head]; inc(head); k:=first[now];
while k>0 do
begin
if (h[e[k].point]>n) and(e[k].c>0) then{如果可以流,且該點未被訪問}
begin
h[e[k].point]:=h[now]+1;
inc(tail);
l[tail]:=e[k].point;
end;
k:=e[k].next;
end;
end;
end;
function dfs(now,low:longint):longint;{根據分層圖增廣,low表示到now為止最多可增廣流量}
var
i,j,k,tmp:longint;
begin
if now=t then exit(low);
dfs:=0; k:=first[now];
while k>0 do
begin
if (e[k].c>0) and (h[e[k].point]=h[now]+1) then{如果在分層圖中符合限制}
begin
if e[k].c<low then tmp:=dfs(e[k].point,e[k].c){尋找可接受的最大流量}
else tmp:=dfs(e[k].point,low);
if tmp=0 then h[e[k].point]:=maxlongint shr 1;
dec(low,tmp);{把可流量減去增廣值}
dec(e[k].c,tmp);
inc(e[k xor 1].c,tmp);
inc(dfs,tmp);
if low=0 then break;{若無法再增廣,退出}
end;
k:=e[k].next;
end;
end;
Procere main;
begin
bfs;
while h[t]<n do{如果在分層圖中找得到匯點}
begin
inc(tot,dfs(s,maxlongint));{根據分層圖增廣}
bfs;{根據新的流量構建分層圖}
end;
end;
Begin
assign(input,'profit.in');reset(input);
assign(output,'profit.out');rewrite(output);
init;
main;
writeln(j-tot);
close(input);close(output);
End.
看在本人手打這么多東西的份上,選我吧