導航:首頁 > 源碼編譯 > 提高數據挖掘效率的演算法

提高數據挖掘效率的演算法

發布時間:2023-05-24 12:53:22

1. 數據挖掘的經典演算法

1. C4.5:是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法。
2. K-means演算法:是一種聚類演算法。
3.SVM:一種監督式學習的方法,廣泛運用於統計分類以及回歸分析中
4.Apriori :是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。
5.EM:最大期望值法。
6.pagerank:是google演算法的重要內容。
7. Adaboost:是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器然後把弱分類器集合起來,構成一個更強的最終分類器。
8.KNN:是一個理論上比較成熟的的方法,也是最簡單的機器學習方法之一。
9.Naive Bayes:在眾多分類方法中,應用最廣泛的有決策樹模型和樸素貝葉斯(Naive Bayes)
10.Cart:分類與回歸樹,在分類樹下面有兩個關鍵的思想,第一個是關於遞歸地劃分自變數空間的想法,第二個是用驗證數據進行減枝。
關聯規則規則定義
在描述有關關聯規則的一些細節之前,我們先來看一個有趣的故事: 尿布與啤酒的故事。
在一家超市裡,有一個有趣的現象:尿布和啤酒赫然擺在一起出售。但是這個奇怪的舉措卻使尿布和啤酒的銷量雙雙增加了。這不是一個笑話,而是發生在美國沃爾瑪連鎖店超市的真實案例,並一直為商家所津津樂道。沃爾瑪擁有世界上最大的數據倉庫系統,為了能夠准確了解顧客在其門店的購買習慣,沃爾瑪對其顧客的購物行為進行購物籃分析,想知道顧客經常一起購買的商品有哪些。沃爾瑪數據倉庫里集中了其各門店的詳細原始交易數據。在這些原始交易數據的基礎上,沃爾瑪利用數據挖掘方法對這些數據進行分析和挖掘。一個意外的發現是:跟尿布一起購買最多的商品竟是啤酒!經過大量實際調查和分析,揭示了一個隱藏在尿布與啤酒背後的美國人的一種行為模式:在美國,一些年輕的父親下班後經常要到超市去買嬰兒尿布,而他們中有30%~40%的人同時也為自己買一些啤酒。產生這一現象的原因是:美國的太太們常叮囑她們的丈夫下班後為小孩買尿布,而丈夫們在買尿布後又隨手帶回了他們喜歡的啤酒。
按常規思維,尿布與啤酒風馬牛不相及,若不是藉助數據挖掘技術對大量交易數據進行挖掘分析,沃爾瑪是不可能發現數據內在這一有價值的規律的。
數據關聯是資料庫中存在的一類重要的可被發現的知識。若兩個或多個變數的取值之間存在某種規律性,就稱為關聯。關聯可分為簡單關聯、時序關聯、因果關聯。關聯分析的目的是找出資料庫中隱藏的關聯網。有時並不知道資料庫中數據的關聯函數,即使知道也是不確定的,因此關聯分析生成的規則帶有可信度。關聯規則挖掘發現大量數據中項集之間有趣的關聯或相關聯系。Agrawal等於1993年首先提出了挖掘顧客交易資料庫中項集間的關聯規則問題,以後諸多的研究人員對關聯規則的挖掘問題進行了大量的研究。他們的工作包括對原有的演算法進行優化,如引入隨機采樣、並行的思想等,以提高演算法挖掘規則的效率;對關聯規則的應用進行推廣。關聯規則挖掘在數據挖掘中是一個重要的課題,最近幾年已被業界所廣泛研究。

2. 數據挖掘十大演算法-

整理里一晚上的數據挖掘演算法,其中主要引自wiki和一些論壇。發布到上作為知識共享,但是發現Latex的公式轉碼到網頁的時候出現了丟失,暫時沒找到解決方法,有空再回來填坑了。

——編者按

一、 C4.5

C4.5演算法是由Ross Quinlan開發的用於產生決策樹的演算法[1],該演算法是對Ross Quinlan之前開發的ID3演算法的一個擴展。C4.5演算法主要應用於統計分類中,主要是通過分析數據的信息熵建立和修剪決策樹。

1.1 決策樹的建立規則

在樹的每個節點處,C4.5選擇最有效地方式對樣本集進行分裂,分裂規則是分析所有屬性的歸一化的信息增益率,選擇其中增益率最高的屬性作為分裂依據,然後在各個分裂出的子集上進行遞歸操作。

依據屬性A對數據集D進行分類的信息熵可以定義如下:

劃分前後的信息增益可以表示為:

那麼,歸一化的信息增益率可以表示為:

1.2 決策樹的修剪方法

C4.5採用的剪枝方法是悲觀剪枝法(Pessimistic Error Pruning,PEP),根據樣本集計運算元樹與葉子的經驗錯誤率,在滿足替換標准時,使用葉子節點替換子樹。

不妨用K表示訓練數據集D中分類到某一個葉子節點的樣本數,其中其中錯誤分類的個數為J,由於用估計該節點的樣本錯誤率存在一定的樣本誤差,因此用表示修正後的樣本錯誤率。那麼,對於決策樹的一個子樹S而言,設其葉子數目為L(S),則子樹S的錯誤分類數為:

設數據集的樣本總數為Num,則標准錯誤可以表示為:

那麼,用表示新葉子的錯誤分類數,則選擇使用新葉子節點替換子樹S的判據可以表示為:

二、KNN

最近鄰域演算法(k-nearest neighbor classification, KNN)[2]是一種用於分類和回歸的非參數統計方法。KNN演算法採用向量空間模型來分類,主要思路是相同類別的案例彼此之間的相似度高,從而可以藉由計算未知樣本與已知類別案例之間的相似度,來實現分類目標。KNN是一種基於局部近似和的實例的學習方法,是目前最簡單的機器學習演算法之一。

在分類問題中,KNN的輸出是一個分類族群,它的對象的分類是由其鄰居的「多數表決」確定的,k個最近鄰居(k為正整數,通常較小)中最常見的分類決定了賦予該對象的類別。若k = 1,則該對象的類別直接由最近的一個節點賦予。在回歸問題中,KNN的輸出是其周圍k個鄰居的平均值。無論是分類還是回歸,衡量鄰居的權重都非常重要,目標是要使較近鄰居的權重比較遠鄰居的權重大,例如,一種常見的加權方案是給每個鄰居權重賦值為1/d,其中d是到鄰居的距離。這也就自然地導致了KNN演算法對於數據的局部結構過於敏感。

三、Naive Bayes

在機器學習的眾多分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)[3]。樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。

在假設各個屬性相互獨立的條件下,NBC模型的分類公式可以簡單地表示為:

但是實際上問題模型的屬性之間往往是非獨立的,這給NBC模型的分類准確度帶來了一定影響。在屬性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型;而在屬性相關性較小時,NBC模型的性能最為良好。

四、CART

CART演算法(Classification And Regression Tree)[4]是一種二分遞歸的決策樹,把當前樣本劃分為兩個子樣本,使得生成的每個非葉子結點都有兩個分支,因此CART演算法生成的決策樹是結構簡潔的二叉樹。由於CART演算法構成的是一個二叉樹,它在每一步的決策時只能是「是」或者「否」,即使一個feature有多個取值,也是把數據分為兩部分。在CART演算法中主要分為兩個步驟:將樣本遞歸劃分進行建樹過程;用驗證數據進行剪枝。

五、K-means

k-平均演算法(k-means clustering)[5]是源於信號處理中的一種向量量化方法,現在則更多地作為一種聚類分析方法流行於數據挖掘領域。k-means的聚類目標是:把n個點(可以是樣本的一次觀察或一個實例)劃分到k個聚類中,使得每個點都屬於離他最近的均值(此即聚類中心)對應的聚類。

5.1 k-means的初始化方法

通常使用的初始化方法有Forgy和隨機劃分(Random Partition)方法。Forgy方法隨機地從數據集中選擇k個觀測作為初始的均值點;而隨機劃分方法則隨機地為每一觀測指定聚類,然後執行「更新」步驟,即計算隨機分配的各聚類的圖心,作為初始的均值點。Forgy方法易於使得初始均值點散開,隨機劃分方法則把均值點都放到靠近數據集中心的地方;隨機劃分方法一般更適用於k-調和均值和模糊k-均值演算法。對於期望-最大化(EM)演算法和標准k-means演算法,Forgy方法作為初始化方法的表現會更好一些。

5.2 k-means的標准演算法

k-means的標准演算法主要包括分配(Assignment)和更新(Update),在初始化得出k個均值點後,演算法將會在這兩個步驟中交替執行。

分配(Assignment):將每個觀測分配到聚類中,使得組內平方和達到最小。

更新(Update):對於上一步得到的每一個聚類,以聚類中觀測值的圖心,作為新的均值點。

六、Apriori

Apriori演算法[6]是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法,其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。Apriori採用自底向上的處理方法,每次只擴展一個對象加入候選集,並且使用數據集對候選集進行檢驗,當不再產生匹配條件的擴展對象時,演算法終止。

Apriori的缺點在於生成候選集的過程中,演算法總是嘗試掃描整個數據集並盡可能多地添加擴展對象,導致計算效率較低;其本質上採用的是寬度優先的遍歷方式,理論上需要遍歷次才可以確定任意的最大子集S。

七、SVM

支持向量機(Support Vector Machine, SVM)[7]是在分類與回歸分析中分析數據的監督式學習模型與相關的學習演算法。給定一組訓練實例,每個訓練實例被標記為屬於兩個類別中的一個或另一個,SVM訓練演算法創建一個將新的實例分配給兩個類別之一的模型,使其成為非概率二元線性分類器。SVM模型是將實例表示為空間中的點,這樣映射就使得單獨類別的實例被盡可能寬的明顯的間隔分開。然後,將新的實例映射到同一空間,並基於它們落在間隔的哪一側來預測所屬類別。

除了進行線性分類之外,SVM還可以使用所謂的核技巧有效地進行非線性分類,將其輸入隱式映射到高維特徵空間中,即支持向量機在高維或無限維空間中構造超平面或超平面集合,用於分類、回歸或其他任務。直觀來說,分類邊界距離最近的訓練數據點越遠越好,因為這樣可以縮小分類器的泛化誤差。

八、EM

最大期望演算法(Expectation–Maximization Algorithm, EM)[7]是從概率模型中尋找參數最大似然估計的一種演算法。其中概率模型依賴於無法觀測的隱性變數。最大期望演算法經常用在機器學習和計算機視覺的數據聚類(Data Clustering)領域。最大期望演算法經過兩個步驟交替進行計算,第一步是計算期望(E),利用對隱藏變數的現有估計值,計算其最大似然估計值;第二步是最大化(M),最大化在E步上求得的最大似然值來計算參數的值。M步上找到的參數估計值被用於下一個E步計算中,這個過程不斷交替進行。

九、PageRank

PageRank演算法設計初衷是根據網站的外部鏈接和內部鏈接的數量和質量對網站的價值進行衡量。PageRank將每個到網頁的鏈接作為對該頁面的一次投票,被鏈接的越多,就意味著被其他網站投票越多。

演算法假設上網者將會不斷點網頁上的鏈接,當遇到了一個沒有任何鏈接出頁面的網頁,這時候上網者會隨機轉到另外的網頁開始瀏覽。設置在任意時刻,用戶到達某頁面後並繼續向後瀏覽的概率,該數值是根據上網者使用瀏覽器書簽的平均頻率估算而得。PageRank值可以表示為:

其中,是被研究的頁面集合,N表示頁面總數,是鏈接入頁面的集合,是從頁面鏈接處的集合。

PageRank演算法的主要缺點是的主要缺點是舊的頁面等級會比新頁面高。因為即使是非常好的新頁面也不會有很多外鏈,除非它是某個站點的子站點。

十、AdaBoost

AdaBoost方法[10]是一種迭代演算法,在每一輪中加入一個新的弱分類器,直到達到某個預定的足夠小的錯誤率。每一個訓練樣本都被賦予一個權重,表明它被某個分類器選入訓練集的概率。如果某個樣本點已經被准確地分類,那麼在構造下一個訓練集中,它被選中的概率就被降低;相反,如果某個樣本點沒有被准確地分類,那麼它的權重就得到提高。通過這樣的方式,AdaBoost方法能「聚焦於」那些較難分的樣本上。在具體實現上,最初令每個樣本的權重都相等,對於第k次迭代操作,我們就根據這些權重來選取樣本點,進而訓練分類器Ck。然後就根據這個分類器,來提高被它分錯的的樣本的權重,並降低被正確分類的樣本權重。然後,權重更新過的樣本集被用於訓練下一個分類器Ck[,並且如此迭代地進行下去。

AdaBoost方法的自適應在於:前一個分類器分錯的樣本會被用來訓練下一個分類器。AdaBoost方法對於雜訊數據和異常數據很敏感。但在一些問題中,AdaBoost方法相對於大多數其它學習演算法而言,不會很容易出現過擬合現象。AdaBoost方法中使用的分類器可能很弱(比如出現很大錯誤率),但只要它的分類效果比隨機好一點(比如兩類問題分類錯誤率略小於0.5),就能夠改善最終得到的模型。而錯誤率高於隨機分類器的弱分類器也是有用的,因為在最終得到的多個分類器的線性組合中,可以給它們賦予負系數,同樣也能提升分類效果。

引用

[1] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.

[2] Altman, N. S. An introction to kernel and nearest-neighbor nonparametric regression. The American Statistician. 1992, 46 (3): 175–185. doi:10.1080/00031305.1992.10475879

[3] Webb, G. I.; Boughton, J.; Wang, Z. Not So Naive Bayes: Aggregating One-Dependence Estimators. Machine Learning (Springer). 2005, 58 (1): 5–24. doi:10.1007/s10994-005-4258-6

[4] decisiontrees.net Interactive Tutorial

[5] Hamerly, G. and Elkan, C. Alternatives to the k-means algorithm that find better clusterings (PDF). Proceedings of the eleventh international conference on Information and knowledge management (CIKM). 2002

[6] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in large databases. Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pages 487-499, Santiago, Chile, September 1994.

[7] Cortes, C.; Vapnik, V. Support-vector networks. Machine Learning. 1995, 20 (3): 273–297. doi:10.1007/BF00994018

[8] Arthur Dempster, Nan Laird, and Donald Rubin. "Maximum likelihood from incomplete data via the EM algorithm". Journal of the Royal Statistical Society, Series B, 39 (1):1–38, 1977

[9] Susan Moskwa. PageRank Distribution Removed From WMT. [October 16, 2009]

[10] Freund, Yoav; Schapire, Robert E. A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. 1995. CiteSeerX: 10.1.1.56.9855

3. 大數據挖掘方法有哪些

數據挖掘是指人們從事先不知道的大量不完整、雜亂、模糊和隨機數據中提取潛在隱藏的有用信息和知識的過程。下面說下我們在挖掘大數據的時候,都會用到的幾種方法:
方法1.(可視化分析)無論是日誌數據分析專家還是普通用戶,數據可視化都是數據分析工具的最基本要求。可視化可以直觀地顯示數據,讓數據自己說話,讓聽眾看到結果。
方法2.(數據挖掘演算法)如果說可視化用於人們觀看,那麼數據挖掘就是給機器看的。集群、分割、孤立點分析和其他演算法使我們能夠深入挖掘數據並挖掘價值。這些演算法不僅要處理大量數據,還必須盡量縮減處理大數據的速度。
方法3.(預測分析能力)數據挖掘使分析師可以更好地理解數據,而預測分析則使分析師可以根據可視化分析和數據挖掘的結果做出一些預測性判斷。
方法4.(語義引擎)由於非結構化數據的多樣性給數據分析帶來了新挑戰,因此需要一系列工具來解析,提取和分析數據。需要將語義引擎設計成從「文檔」中智能地提取信息。
方法5.(數據質量和主數據管理)數據質量和數據管理是一些管理方面的最佳實踐。通過標准化流程和工具處理數據可確保獲得預定義的高質量分析結果。

想要了解更多有關大數據挖掘的信息,可以了解一下CDA數據分析師的課程。課程內容兼顧培養解決數據挖掘流程問題的橫向能力以及解決數據挖掘演算法問題的縱向能力。要求學生在使用演算法解決微觀根因分析、預測分析的問題上,根據業務場景來綜合判斷,洞察數據規律,使用正確的數據清洗與特徵工程方法,綜合使用統計分析方法、統計模型、運籌學、機器學習、文本挖掘演算法,而非單一的機器學習演算法。真正給企業提出可行性的價值方案和價值業務結果。點擊預約免費試聽課。

4. 常用的數據挖掘演算法有哪幾類

常用的數據挖掘演算法分為以下幾類:神經網路,遺傳演算法,回歸演算法,聚類分析演算法,貝耶斯演算法。

目前已經進入大數據的時代,所以數據挖掘和大數據分析的就業前景非常好,學好大數據分析和數據挖掘可以在各個領域中發揮自己的價值;同時,大數據分析並不是一蹴而就的事情,而是需要你日積月累的數據處理經驗,不是會被輕易替代的。一家公司的各項工作,基本上都都用數據體現出來,一位高級的數據分析師職位通常是數據職能架構中領航者,擁有較高的分析和思辨能力,對於業務的理解到位,並且深度知曉公司的管理和商業行為,他可以負責一個子產品或模塊級別的項目,帶領團隊來全面解決問題,把控手下數據分析師的工作質量。

想要了解更多有關數據挖掘演算法的信息,可以了解一下CDA數據分析師的課程。課程教你學企業需要的敏捷演算法建模能力,可以學到前沿且實用的技術,挖掘數據的魅力;教你用可落地、易操作的數據科學思維和技術模板構建出優秀模型,只教實用干貨,以專精技術能力提升業務效果與效率。點擊預約免費試聽課。

5. 數據挖掘中的經典演算法

大家都知道,數據挖掘中有很多的演算法,不同的演算法有著不同的優勢,它們在數據挖掘領域都產生了極為深遠的影響。那麼大家知道不知知道數據挖掘中的經典演算法都有哪些呢?在這篇文章中我們就給大家介紹數據挖掘中三個經典的演算法,希望這篇文章能夠更好的幫助大家。
1.K-Means演算法
K-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k大於n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均方誤差總和最小。這種演算法在數據挖掘中是十分常見的演算法。
2.支持向量機
而Support vector machines就是支持向量機,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,這種方法廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假定平行超平面間的距離或差距越大,分類器的總誤差越小。這些優點也就成就了這種演算法。

3.C4.5演算法
然後我們給大家說一下C4.5演算法,C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並對ID3演算法進行了改進,這種改進具體體現在四個方面,第一就是在樹構造過程中進行剪枝,第二就是能夠完成對連續屬性的離散化處理,第三就是用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足,第四就是能夠對不完整數據進行處理。那麼這種演算法的優點是什麼呢?優點就是產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。
相信大家看了這篇文章以後對The k-means algorithm演算法、Support vector machines、C4.5演算法有了比較是深刻的了解,其實這三種演算法那都是十分重要的演算法,能夠幫助數據挖掘解決更多的問題。大家在學習數據挖掘的時候一定要注意好這些問題。

6. 三種經典的數據挖掘演算法

演算法,可以說是很多技術的核心,而數據挖掘也是這樣的。數據挖掘中有很多的演算法,正是這些演算法的存在,我們的數據挖掘才能夠解決更多的問題。如果我們掌握了這些演算法,我們就能夠順利地進行數據挖掘工作,在這篇文章我們就給大家簡單介紹一下數據挖掘的經典演算法,希望能夠給大家帶來幫助。
1.KNN演算法
KNN演算法的全名稱叫做k-nearest neighbor classification,也就是K最近鄰,簡稱為KNN演算法,這種分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似,即特徵空間中最鄰近的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。KNN演算法常用於數據挖掘中的分類,起到了至關重要的作用。
2.Naive Bayes演算法
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。這種演算法在數據挖掘工作使用率還是挺高的,一名優秀的數據挖掘師一定懂得使用這一種演算法。
3.CART演算法
CART, 也就是Classification and Regression Trees。就是我們常見的分類與回歸樹,在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。這兩個思想也就決定了這種演算法的地位。
在這篇文章中我們給大家介紹了關於KNN演算法、Naive Bayes演算法、CART演算法的相關知識,其實這三種演算法在數據挖掘中占據著很高的地位,所以說如果要從事數據挖掘行業一定不能忽略這些演算法的學習。

7. 數據挖掘十大經典演算法之樸素貝葉斯

樸素貝葉斯,它是一種簡單但極為強大的預測建模演算法。之所以稱為樸素貝葉斯,**是因為它假設每個輸入變數是獨立的。**這個假設很硬,現實生活中根本不滿足,但是這項技術對於絕大部分的復雜問題仍然非常有效。

貝葉斯原理、貝葉斯分類和樸素貝葉斯這三者之間是有區別的。

貝葉斯原理是最大的概念,它解決了概率論中「逆向概率」的問題,在這個理論基礎上,人們設計出了貝葉斯分類器,樸素貝葉斯分類是貝葉斯分類器中的一種,也是最簡單,最常用的分類器。樸素貝葉斯之所以樸素是因為它假設屬性是相互獨立的,因此對實際情況有所約束,**如果屬性之間存在關聯,分類准確率會降低。**不過好在對於大部分情況下,樸素貝葉斯的分類效果都不錯。

樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換而言之樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。

樸素貝葉斯分類 常用於文本分類 ,尤其是對於英文等語言來說,分類效果很好。它常用於垃圾文本過濾、情感預測、推薦系統等。

1、 需要知道先驗概率 

先驗概率是計算後驗概率的基礎。在傳統的概率理論中,先驗概率可以由大量的重復實驗所獲得的各類樣本出現的頻率來近似獲得,其基礎是「大數定律」,這一思想稱為「頻率主義」。而在稱為「貝葉斯主義」的數理統計學派中,他們認為時間是單向的,許多事件的發生不具有可重復性,因此先驗概率只能根據對置信度的主觀判定來給出,也可以說由「信仰」來確定。 

2、按照獲得的信息對先驗概率進行修正 

在沒有獲得任何信息的時候,如果要進行分類判別,只能依據各類存在的先驗概率,將樣本劃分到先驗概率大的一類中。而在獲得了更多關於樣本特徵的信息後,可以依照貝葉斯公式對先驗概率進行修正,得到後驗概率,提高分類決策的准確性和置信度。 

3、分類決策存在錯誤率 

由於貝葉斯分類是在樣本取得某特徵值時對它屬於各類的概率進行推測,並無法獲得樣本真實的類別歸屬情況,所以分類決策一定存在錯誤率,即使錯誤率很低,分類錯誤的情況也可能發生。 

第一階段:准備階段

在這個階段我們需要確定特徵屬性,同時明確預測值是什麼。並對每個特徵屬性進行適當劃分,然後由人工對一部分數據進行分類,形成訓練樣本。

第二階段:訓練階段

這個階段就是生成分類器,主要工作是 計算每個類別在訓練樣本中的出現頻率 及 每個特徵屬性劃分對每個類別的條件概率。

第三階段:應用階段

這個階段是使用分類器對新數據進行分類。

優點:

(1)樸素貝葉斯模型發源於古典數學理論,有穩定的分類效率。

(2)對小規模的數據表現很好,能個處理多分類任務,適合增量式訓練,尤其是數據量超出內存時,我們可以一批批的去增量訓練。

(3)對缺失數據不太敏感,演算法也比較簡單,常用於文本分類。

缺點:

(1)理論上,樸素貝葉斯模型與其他分類方法相比具有最小的誤差率。但是實際上並非總是如此,這是因為樸素貝葉斯模型給定輸出類別的情況下,假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,在屬性個數比較多或者屬性之間相關性較大時,分類效果不好。而在屬性相關性較小時,樸素貝葉斯性能最為良好。對於這一點,有半樸素貝葉斯之類的演算法通過考慮部分關聯性適度改進。

(2)需要知道先驗概率,且先驗概率很多時候取決於假設,假設的模型可以有很多種,因此在某些時候會由於假設的先驗模型的原因導致預測效果不佳。

(3)由於我們是通過先驗和數據來決定後驗的概率從而決定分類,所以分類決策存在一定的錯誤率。

(4)對輸入數據的表達形式很敏感。

參考:

https://blog.csdn.net/qiu__liao/article/details/90671932

https://blog.csdn.net/u011067360/article/details/24368085

8. 數據挖掘的演算法有哪些

數據挖掘領域的十大經典演算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.

具體演算法在http://blog.csdn.net/aladdina/article/details/4141177

9. 數據挖掘演算法有哪些

以下主要是常見的10種數據挖掘的演算法,數據挖掘分為:分類(Logistic回歸模型、神經網路、支持向量機等)、關聯分析、聚類分析、孤立點分析。每一大類下都有好幾種演算法,這個具體可以參考數據挖掘概論這本書(英文最新版)

閱讀全文

與提高數據挖掘效率的演算法相關的資料

熱點內容
單片機程序員培訓 瀏覽:990
PHP商城源代碼csdn 瀏覽:634
怎麼把電腦里文件夾挪出來 瀏覽:693
java流程處理 瀏覽:683
ftp創建本地文件夾 瀏覽:659
腰椎第一節壓縮 瀏覽:738
xp去掉加密屬性 瀏覽:117
2345怎麼壓縮文件 瀏覽:982
迷你奪寶新演算法 瀏覽:407
伺服器如何防止木馬控制 瀏覽:715
壓縮空氣用電磁閥 瀏覽:742
微信為什麼不能設置加密認證 瀏覽:672
鄧倫參加密室逃脫視頻 瀏覽:391
音頻壓縮編碼標准 瀏覽:300
常提到的app是表示什麼 瀏覽:261
天津程序員傳銷 瀏覽:349
下班之後的程序員 瀏覽:73
檢測支持ssl加密演算法 瀏覽:344
衢州發布新聞什麼APP 瀏覽:85
中國移動長沙dns伺服器地址 瀏覽:252