❶ 如何寫一個簡單的手寫識別演算法
我原來看過一個演算法,她說覺得gesture recognizer 是比洞閉拍較好的解法。
他也有一個類似的演算法,借鑒了原始手寫ocr的思路來實現的。
❷ 在圖像處理中有哪些演算法
1、圖像變換:
由於圖像陣列很大,直接在空間域中進行處理,涉及計算量很大。採用各種圖像變換的方法,如傅立葉變換、沃爾什變換、離散餘弦變換等間接處理技術,將空間域的處理轉換為變換域處理,可減少計算量,獲得更有效的處理。它在圖像處理中也有著廣泛而有效的應用。
2、圖像編碼壓縮:
圖像編碼壓縮技術可減少描述圖像的數據量,以便節省圖像傳輸、處理時間和減少所佔用的存儲器容量。
壓縮可以在不失真的前提下獲得,也可以在允許的失真條件下進行。
編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術。
3、圖像增強和復原:
圖像增強和復原的目的是為了提高圖像的質量,如去除雜訊,提高圖像的清晰度等。
圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分。如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中雜訊影響。
4、圖像分割:
圖像分割是數字圖像處理中的關鍵技術之一。
圖像分割是將圖像中有意義的特徵部分提取出來,其有意義的特徵有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎。
5、圖像描述:
圖像描述是圖像識別和理解的必要前提。
一般圖像的描述方法採用二維形狀描述,它有邊界描述和區域描述兩類方法。對於特殊的紋理圖像可採用二維紋理特徵描述。
6、圖像分類:
圖像分類屬於模式識別的范疇,其主要內容是圖像經過某些預處理(增強、復原、壓縮)後,進行圖像分割和特徵提取,從而進行判決分類。
圖像分類常採用經典的模式識別方法,有統計模式分類和句法模式分類。
圖像處理主要應用在攝影及印刷、衛星圖像處理、醫學圖像處理、面孔識別、特徵識別、顯微圖像處理和汽車障礙識別等。
數字圖像處理技術源於20世紀20年代,當時通過海底電纜從英國倫敦到美國紐約傳輸了一幅照片,採用了數字壓縮技術。
數字圖像處理技術可以幫助人們更客觀、准確地認識世界,人的視覺系統可以幫助人類從外界獲取3/4以上的信息,而圖像、圖形又是所有視覺信息的載體,盡管人眼的鑒別力很高,可以識別上千種顏色,
但很多情況下,圖像對於人眼來說是模糊的甚至是不可見的,通過圖象增強技術,可以使模糊甚至不可見的圖像變得清晰明亮。
❸ 把一份文件復印,可是上面有手寫的字,太多了!怎麼隱去這些字
如果行中啟手培核寫字沒有蓋住印刷的字,用白紙蓋住再復印就行了。如果檔如蓋住了,先用掃描儀掃描一下(精度高一些),用畫圖軟體,將圖像放大,用橡皮將手寫的字跡擦掉。然後列印。
❹ 有不用Ps就能去手寫水印的方法嗎
即便是有水印的圖片也可以用手機軟體處朱利安理掉。那麼用。簡單一點的可以用美圖秀秀的
具體步驟如下:
1、進入主扮隱納界面,點擊首頁的「美化圖片」功能。
❺ 手寫數字識別的神經網路演算法有哪些
看數字圖片而定。如果圖片較小並且質量還不錯,那麼通過2層的神經網路就能勝任。
對於MNIst數據集(28*28的手寫數字),2層神經網路准確率可達99%,svm也有98%以上。
以上實現非常簡單,matlab已經有現成工具箱。
卷積神經網路通常用於更加復雜的場合,閉合是被圖像內容等。在MNIST數據集上cnn可達99.7%准確率,但是實現起來較為復雜,需要通過開源框架caffe,keras等進行編程。
如果對准確率要求沒有達到小數點後兩位的程度,用簡單的svm,神經網路,softmax等調調參數就行了。
❻ 想去掉圖片里的手寫字體,有什麼好辦法
在這里強烈給你安利網路網盤,網路網盤可以輕松的去除試卷手寫的源仿。而且現在還是免費的。下面來說一下怎麼操作。
第一步、打開網路網盤選擇掃描圖標
第五步、去手寫完成,然喊裂悔後就可以轉化成各種文檔保存起來了,我比較喜歡PDF那就選擇PDF。