導航:首頁 > 源碼編譯 > 如何在電腦上寫出演算法思路

如何在電腦上寫出演算法思路

發布時間:2023-05-26 02:16:45

⑴ 怎麼用代碼實現一個具體演算法,思路是怎麼樣的

就和做方程一樣,我自己的感覺。語言之類的都是工具
比如C
你要描述一個z=x+y的程序,要輸出z的話。那首先必須x y有一個值吧,那你得通過鍵盤給他輸入一個值,或者直接賦一個值給他。當x和y都有值了,計算機就能識別+,=這兩個運算符號,把兩個值相加,然後通過=賦給z。最後,你剩下的就是輸出z的值了。
其實,其他的演算法也差不多,只是你練習少了而已。代碼記住要多寫,等你熟練了,不會覺得如何描述演算法有什麼困難的。

⑵ 如何使演算法在計算機上運行

演算法只是一種編程的思想。要把你演算法的功能表現出來還需要使用工具:
運行環境
編程語言
對應的編譯

用編程語言翻譯你的演算法成編譯器可以認得的語言
用編譯器編譯,也就是翻譯成可以讓運行環境可以認得的語言。
一般運行環境可以認得的語言就是機器語言。比如用vc編寫的代碼,編譯出程序。
但有些時候不是的,比如用java語言寫的代碼,java編譯器編譯出的程序是不能直接給機器運行的,而是給java 虛擬機去解釋成機器語言然後給機器執行

⑶ 如何寫一個演算法

演算法是在有限步驟內求解某一問題所使用的一組定義明確的規則。通俗點說,就是計算機解題的過程。在這個過程中,無論是形成解題思路還是編寫程序,都是在實施某種演算法。前者是推理實現的演算法,後者是操作實現的演算法。 一個演算法應該具有以下五個重要的特徵: 1、有窮性: 一個演算法必須保證執行有限步之後結束; 2、確切性: 演算法的每一步驟必須有確切的定義; 3、輸入:一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定除了初始條件; 4、輸出:一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的; 5、可行性: 演算法原則上能夠精確地運行,而且人們用筆和紙做有限次運算後即可完成。 當遇到一個演算法問題時,首先要知道自己以前有沒有處理過這種問題.如果見過,那麼你一般會順利地做出來;如果沒見過,那麼考慮以下問題: 當遇到一個演算法問題時,首先要知道自己以前有沒有處理過這種問題.如果見過,那麼你一般會順利地做出來;如果沒見過,那麼考慮以下問題: 1. 問題是否是建立在某種已知的熟悉的數據結構(例如,二*樹)上?如果不是,則要自己設計數據結構。 2. 問題所要求編寫的演算法屬於以下哪種類型?(建立數據結構,修改數據結構,遍歷,查找,排序...)3. 分析問題所要求編寫的演算法的數學性質.是否具備遞歸特徵?(對於遞歸程序設計,只要設計出合理的參數表以及遞歸結束的條件,則基本上大功告成.)4. 繼續分析問題的數學本質.根據你以前的編程經驗,設想一種可能是可行的解決辦法,並證明這種解決辦法的正確性.如果題目對演算法有時空方面的要求,證明你的設想滿足其要求.一般的,時間效率和空間效率難以兼得.有時必須通過建立輔助存儲的方法來節省時間.5. 通過一段時間的分析,你對解決這個問題已經有了自己的一些思路.或者說,你已經可以用自然語言把你的演算法簡單描述出來.繼續驗證其正確性,努力發現其中的錯誤並找出解決辦法.在必要的時候(發現了無法解決的矛盾),推翻自己的思路,從頭開始構思.6. 確認你的思路可行以後,開始編寫程序.在編寫代碼的過程中,盡可能把各種問題考慮得詳細,周密.程序應該具有良好的結構,並且在關鍵的地方配有注釋.7. 舉一個例子,然後在紙上用筆執行你的程序,進一步驗證其正確性.當遇到與你的設想不符的情況時,分析問題產生的原因是編程方面的問題還是演算法思想本身有問題. 8. 如果程序通過了上述正確性驗證,那麼在將其進一步優化或簡化。 9. 撰寫思路分析,注釋. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------看不懂,還是不明白,有誰清楚告訴我啊,

⑷ 請教高人 遞歸演算法編寫思路技巧

一個子程序(過程或函數)的定義中又直接或間接地調用該子程序本身,稱為遞歸。遞歸是一種非常有用的程序設計方法。用遞歸演算法編寫的程序結構清晰,具有很好的可讀性。遞歸演算法的基本思想是:把規模大的、較難解決的問題變成規模較小的、易解決的同一問題。規模較小的問題又變成規模更小的問題,並且小到一定程度可以直接得出它的解,從而得到原來問題的解。
利用遞歸演算法解題,首先要對問題的以下三個方面進行分析:
一、決定問題規模的參數。需要用遞歸演算法解決的問題,其規模通常都是比較大的,在問題中決定規模大小(或問題復雜程度)的量有哪些?把它們找出來。
二、問題的邊界條件及邊界值。在什麼情況下可以直接得出問題的解?這就是問題的邊界條件及邊界值。
三、解決問題的通式。把規模大的、較難解決的問題變成規模較小、易解決的同一問題,需要通過哪些步驟或等式來實現?這是解決遞歸問題的難點。把這些步驟或等式確定下來。
把以上三個方面分析好之後,就可以在子程序中定義遞歸調用。其一般格式為:
if 邊界條件 1 成立 then
賦予邊界值 1
【 elseif 邊界條件 2 成立 then
賦予邊界值 2
┇ 】
else
調用解決問題的通式
endif
例 1 : 計算勒讓德多項式的值

x 、 n 由鍵盤輸入。
分析: 當 n = 0 或 n = 1 時,多項式的值都可以直接求出來,只是當 n > 1 時,才使問題變得復雜,決定問題復雜程度的參數是 n 。根據題目提供的已知條件,我們也很容易發現,問題的邊界條件及邊界值有兩個,分別是:當 n = 0 時 P n (x) = 1 和當 n = 1 時 P n (x) = x 。解決問題的通式是:
P n (x) = ((2n - 1)P n - 1 (x) - (n - 1)P n - 2 (x)) / n 。
接下來按照上面介紹的一般格式定義遞歸子程序。
function Pnx(n as integer)
if n = 0 then
Pnx = 1
elseif n = 1 then
Pnx = x
else
Pnx = ((2*n - 1)*Pnx(n - 1) - (n - 1)*Pnx(n - 2)) / n
endif
end function
例 2 : Hanoi 塔問題:傳說印度教的主神梵天創造世界時,在印度北部佛教聖地貝拿勒斯聖廟里,安放了一塊黃銅板,板上插著三根寶石針,在其中一根寶石針上,自下而上地放著由大到小的 64 個金盤。這就是所謂的梵塔( Hanoi ),如圖。梵天要求僧侶們堅持不渝地按下面的規則把 64 個盤子移到另一根針上:

(1) 一次只能移一個盤子;
(2) 盤子只許在三根針上存放;
(3) 永遠不許大盤壓小盤。
梵天宣稱,當把他創造世界之時所安放的 64 個盤子全部移到另一根針上時,世界將在一聲霹靂聲中毀滅。那時,他的虔誠的信徒都可以升天。
要求設計一個程序輸出盤子的移動過程。
分析: 為了使問題更具有普遍性,設共有 n 個金盤,並且將金盤由小到大依次編號為 1 , 2 ,…, n 。要把放在 s(source) 針上的 n 個金盤移到目的針 o(objective) 上,當只有一個金盤,即 n = 1 時,問題是比較簡單的,只要將編號為 1 的金盤從 s 針上直接移至 o 針上即可。可定義過程 move(s,1,o) 來實現。只是當 n>1 時,才使問題變得復雜。決定問題規模的參數是金盤的個數 n ;問題的邊界條件及邊界值是:當 n = 1 時, move(s,1,o) 。
當金盤不止一個時,可以把最上面的 n - 1 個金盤看作一個整體。這樣 n 個金盤就分成了兩個部分:上面 n - 1 個金盤和最下面的編號為 n 的金盤。移動金盤的問題就可以分成下面三個子問題(三個步驟):
(1) 藉助 o 針,將 n - 1 個金盤(依照上述法則)從 s 針移至 i(indirect) 針上;
(2) 將編號為 n 的金盤直接從 s 針移至 o 針上;
(3) 藉助 s 針,將 i 針上的 n - 1 個金盤(依照上述法則)移至 o 針上。如圖

其中第二步只移動一個金盤,很容易解決。第一、第三步雖然不能直接解決,但我們已經把移動 n 個金盤的問題變成了移動 n - 1 個金盤的問題,問題的規模變小了。如果再把第一、第三步分別分成類似的三個子問題,移動 n - 1 個金盤的問題還可以變成移動 n - 2 個金盤的問題,同樣可變成移動 n - 3 ,…, 1 個金盤的問題,從而將整個問題加以解決。
這三個步驟就是解決問題的通式,可以以過程的形式把它們定義下來:
hanoi(n - 1,s,o,i)
move(s,n,o)
hanoi(n - 1,i,s,o)
參考程序如下:
declare sub hanoi(n,s,i,o)
declare sub move(s,n,o)
input "How many disks?",n
s = 1
i = 2
o = 3
call hanoi(n,s,i,o)
end
sub hanoi(n,s,i,o)
rem 遞歸子程序
if n = 1 then
call move(s,1,o)
else
call hanoi(n - 1,s,o,i)
call move(s,n,o)
call hanoi(n - 1,i,s,o)
endif
end sub
sub move(s,n,o)
print "move disk";n;
print "from";s;"to";o
end sub

閱讀全文

與如何在電腦上寫出演算法思路相關的資料

熱點內容
下班之後的程序員 瀏覽:69
檢測支持ssl加密演算法 瀏覽:340
衢州發布新聞什麼APP 瀏覽:80
中國移動長沙dns伺服器地址 瀏覽:249
wifi密碼加密了怎麼破解嗎 瀏覽:596
linux命令cpu使用率 瀏覽:67
linux實用命令 瀏覽:238
傳奇引擎修改在線時間命令 瀏覽:109
php取域名中間 瀏覽:897
cad命令欄太小 瀏覽:830
php開發環境搭建eclipse 瀏覽:480
qt文件夾名稱大全 瀏覽:212
金山雲伺服器架構 瀏覽:230
安卓系統筆記本怎麼切換系統 瀏覽:618
u盤加密快2個小時還沒有搞完 瀏覽:93
小米有品商家版app叫什麼 瀏覽:94
行命令調用 瀏覽:436
菜鳥裹裹員用什麼app 瀏覽:273
窮查理寶典pdf下載 瀏覽:514
csgo您已被禁用此伺服器怎麼辦 瀏覽:398