Ⅰ 哪有linux c++ socket 線程池或者多線程 server的源碼
io本身堵塞或非堵塞,看應用的吧。
至於非同步,也是看應用情況。
Ⅱ java線程池中的核心線程是如何被重復利用的
Java線程池中的核心線程是如何被重復利用的?
引言
在Java開發中,經常需要創建線程去執行一些任務,實現起來也非常方便,但如果並發的線程數量很多,並且每個線程都是執行一個時間很短的任務就結束了,這樣頻繁創建線程就會大大降低系統的效率,因為頻繁創建線程和銷毀線程需要時間。此時,我們很自然會想到使用線程池來解決這個問題。
使用線程池的好處:
降低資源消耗。java中所有的池化技術都有一個好處,就是通過復用池中的對象,降低系統資源消耗。設想一下如果我們有n多個子任務需要執行,如果我們為每個子任務都創建一個執行線程,而創建線程的過程是需要一定的系統消耗的,最後肯定會拖慢整個系統的處理速度。而通過線程池我們可以做到復用線程,任務有多個,但執行任務的線程可以通過線程池來復用,這樣減少了創建線程的開銷,系統資源利用率得到了提升。
降低管理線程的難度。多線程環境下對線程的管理是最容易出現問題的,而線程池通過框架為我們降低了管理線程的難度。我們不用再去擔心何時該銷毀線程,如何最大限度的避免多線程的資源競爭。這些事情線程池都幫我們代勞了。
提升任務處理速度。線程池中長期駐留了一定數量的活線程,當任務需要執行時,我們不必先去創建線程,線程池會自己選擇利用現有的活線程來處理任務。
很顯然,線程池一個很顯著的特徵就是「長期駐留了一定數量的活線程」,避免了頻繁創建線程和銷毀線程的開銷,那麼它是如何做到的呢?我們知道一個線程只要執行完了run()方法內的代碼,這個線程的使命就完成了,等待它的就是銷毀。既然這是個「活線程」,自然是不能很快就銷毀的。為了搞清楚這個「活線程」是如何工作的,下面通過追蹤源碼來看看能不能解開這個疑問。
分析方法
在分析源碼之前先來思考一下要怎麼去分析,源碼往往是比較復雜的,如果知識儲備不夠豐厚,很有可能會讀不下去,或者讀岔了。一般來講要時刻緊跟著自己的目標來看代碼,跟目標關系不大的代碼可以不理會它,一些異常的處理也可以暫不理會,先看正常的流程。就我們現在要分析的源碼而言,目標就是看看線程是如何被復用的。那麼對於線程池的狀態的管理以及非正常狀態下的處理代碼就可以不理會,具體來講,在ThreadPollExcutor類中,有一個欄位private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));是對線程池的運行狀態和線程池中有效線程的數量進行控制的, 它包含兩部分信息: 線程池的運行狀態 (runState) 和線程池內有效線程的數量 (workerCount),還有幾個對ctl進行計算的方法:
以上兩個方法在源碼中經常用到,結合我們的目標,對運行狀態的一些判斷及處理可以不用去管,而對當前活動線程數要加以關注等等。
下面將遵循這些原則來分析源碼。
解惑
當我們要向線程池添加一個任務時是調用ThreadPollExcutor對象的execute(Runnable command)方法來完成的,所以先來看看ThreadPollExcutor類中的execute(Runnable command)方法的源碼:
按照我們在分析方法中提到的一些原則,去掉一些相關性不強的代碼,看看核心代碼是怎樣的。
這樣一看,邏輯應該清晰很多了。
如果 當前活動線程數 < 指定的核心線程數,則創建並啟動一個線程來執行新提交的任務(此時新建的線程相當於核心線程);
如果 當前活動線程數 >= 指定的核心線程數,且緩存隊列未滿,則將任務添加到緩存隊列中;
如果 當前活動線程數 >= 指定的核心線程數,且緩存隊列已滿,則創建並啟動一個線程來執行新提交的任務(此時新建的線程相當於非核心線程);
接下來看addWorker(Runnable firstTask, boolean core)方法
同樣,我們也來簡化一下:
看到這里,我們大概能猜測到,addWorker方法的功能就是新建一個線程並啟動這個線程,要執行的任務應該就是在這個線程中執行。為了證實我們的這種猜測需要再來看看Worker這個類。
從上面的Worker類的聲明可以看到,它實現了Runnable介面,以及從它的構造方法中可以知道待執行的任務賦值給了它的變數firstTask,並以它自己為參數新建了一個線程賦值給它的變數thread,那麼運行這個線程的時候其實就是執行Worker的run()方法,來看一下這個方法:
在run()方法中只調了一下 runWorker(this) 方法,再來簡化一下這個 runWorker() 方法
很明顯,runWorker()方法裡面執行了我們新建Worker對象時傳進去的待執行的任務,到這里為止貌似這個worker的run()方法就執行完了,既然執行完了那麼這個線程也就沒用了,只有等待虛擬機銷毀了。那麼回顧一下我們的目標:Java線程池中的核心線程是如何被重復利用的?好像並沒有重復利用啊,新建一個線程,執行一個任務,然後就結束了,銷毀了。沒什麼特別的啊,難道有什麼地方漏掉了,被忽略了?再仔細看一下runWorker()方法的代碼,有一個while循環,當執行完firstTask後task==null了,那麼就會執行判斷條件(task = getTask()) != null,我們假設這個條件成立的話,那麼這個線程就不止只執行一個任務了,可以執行多個任務了,也就實現了重復利用了。答案呼之欲出了,接著看getTask()方法
老規矩,簡化一下代碼來看:
從以上代碼可以看出,getTask()的作用是
如果當前活動線程數大於核心線程數,當去緩存隊列中取任務的時候,如果緩存隊列中沒任務了,則等待keepAliveTime的時長,此時還沒任務就返回null,這就意味著runWorker()方法中的while循環會被退出,其對應的線程就要銷毀了,也就是線程池中少了一個線程了。因此只要線程池中的線程數大於核心線程數就會這樣一個一個地銷毀這些多餘的線程。
如果當前活動線程數小於等於核心線程數,同樣也是去緩存隊列中取任務,但當緩存隊列中沒任務了,就會進入阻塞狀態,直到能取出任務為止,因此這個線程是處於阻塞狀態的,並不會因為緩存隊列中沒有任務了而被銷毀。這樣就保證了線程池有N個線程是活的,可以隨時處理任務,從而達到重復利用的目的。
小結
通過以上的分析,應該算是比較清楚地解答了「線程池中的核心線程是如何被重復利用的」這個問題,同時也對線程池的實現機制有了更進一步的理解:
當有新任務來的時候,先看看當前的線程數有沒有超過核心線程數,如果沒超過就直接新建一個線程來執行新的任務,如果超過了就看看緩存隊列有沒有滿,沒滿就將新任務放進緩存隊列中,滿了就新建一個線程來執行新的任務,如果線程池中的線程數已經達到了指定的最大線程數了,那就根據相應的策略拒絕任務。
當緩存隊列中的任務都執行完了的時候,線程池中的線程數如果大於核心線程數,就銷毀多出來的線程,直到線程池中的線程數等於核心線程數。此時這些線程就不會被銷毀了,它們一直處於阻塞狀態,等待新的任務到來。
注意:
本文所說的「核心線程」、「非核心線程」是一個虛擬的概念,是為了方便描述而虛擬出來的概念,在代碼中並沒有哪個線程被標記為「核心線程」或「非核心線程」,所有線程都是一樣的,只是當線程池中的線程多於指定的核心線程數量時,會將多出來的線程銷毀掉,池中只保留指定個數的線程。那些被銷毀的線程是隨機的,可能是第一個創建的線程,也可能是最後一個創建的線程,或其它時候創建的線程。一開始我以為會有一些線程被標記為「核心線程」,而其它的則是「非核心線程」,在銷毀多餘線程的時候只銷毀那些「非核心線程」,而「核心線程」不被銷毀。這種理解是錯誤的。
另外還有一個重要的介面 BlockingQueue 值得去了解,它定義了一些入隊出隊同步操作的方法,還可以阻塞,作用很大。
Ⅲ 線程池如何保證核心線程不被銷毀
Java線程池中的核心線程是如何被重復利用的?
引言
在Java開發中,經常需要創建線程去執行一些任務,實現起來也非常方便,但如果並發的線程數量很多,並且每個線程都是執行一個時間很短的任務就結束了,這樣頻繁創建線程就會大大降低系統的效率,因為頻繁創建線程和銷毀線程需要時間。此時,我們很自然會想到使用線程池來解決這個問題。
使用線程池的好處:
降低資源消耗。java中所有的池化技術都有一個好處,就是通過復用池中的對象,降低系統資源消耗。設想一下如果我們有n多個子任務需要執行,如果我們為每個子任務都創建一個執行線程,而創建線程的過程是需要一定的系統消耗的,最後肯定會拖慢整個系統的處理速度。而通過線程池我們可以做到復用線程,任務有多個,但執行任務的線程可以通過線程池來復用,這樣減少了創建線程的開銷,系統資源利用率得到了提升。
降低管理線程的難度。多線程環境下對線程的管理是最容易出現問題的,而線程池通過框架為我們降低了管理線程的難度。我們不用再去擔心何時該銷毀線程,如何最大限度的避免多線程的資源競爭。這些事情線程池都幫我們代勞了。
提升任務處理速度。線程池中長期駐留了一定數量的活線程,當任務需要執行時,我們不必先去創建線程,線程池會自己選擇利用現有的活線程來處理任務。
很顯然,線程池一個很顯著的特徵就是「長期駐留了一定數量的活線程」,避免了頻繁創建線程和銷毀線程的開銷,那麼它是如何做到的呢?我們知道一個線程只要執行完了run()方法內的代碼,這個線程的使命就完成了,等待它的就是銷毀。既然這是個「活線程」,自然是不能很快就銷毀的。為了搞清楚這個「活線程」是如何工作的,下面通過追蹤源碼來看看能不能解開這個疑問。
分析方法
在分析源碼之前先來思考一下要怎麼去分析,源碼往往是比較復雜的,如果知識儲備不夠豐厚,很有可能會讀不下去,或者讀岔了。一般來講要時刻緊跟著自己的目標來看代碼,跟目標關系不大的代碼可以不理會它,一些異常的處理也可以暫不理會,先看正常的流程。就我們現在要分析的源碼而言,目標就是看看線程是如何被復用的。那麼對於線程池的狀態的管理以及非正常狀態下的處理代碼就可以不理會,具體來講,在ThreadPollExcutor類中,有一個欄位private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));是對線程池的運行狀態和線程池中有效線程的數量進行控制的, 它包含兩部分信息: 線程池的運行狀態 (runState) 和線程池內有效線程的數量 (workerCount)
Ⅳ 什麼是java線程池
多線程是為了能夠讓計算機資源合理的分配,對於處理不同的任務創建不同的線程進行處理,但是計算機創建一個線程或者銷毀一個線程所花費的也是比較昂貴的,有時候需要同時處理的事情比較多,就需要我們頻繁的進行線程的創建和銷毀,這樣花費的時間也是比較多的。為了解決這一問題,我們就可以引用線程池的概念。
所謂線程池就是將線程集中管理起來,當需要線程的時候,可以從線程池中獲取空閑的線程,這樣可以減少線程的頻繁創建與銷毀,節省很大的時間和減少很多不必要的操作。
在java中提供了ThreadPoolExecutor類來進行線程的管理,這個類繼承於AbstractExecutorService,而AbstractExecutorService實現了ExecutorService介面,我們可以使用ThreadPoolExecutor來進行線程池的創建。
在ThreadPoolExecutor的構造方法中,有多個參數,可以配置不同的參數來進行優化。這個類的源碼構造方法為:
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler)其中每個參數代表的意義分別為
corePoolSize : 線程池中的核心線程數量,當線程池中當前的線程數小於這個配置的時候,如果有一個新的任務到來,即使線程池中還存在空閑狀態的線程,程序也會繼續創建一個新的線程放進線程池當中
maximumPoolSize: 線程池中的線程最大數量
keepAliveTime:當線程池中的線程數量大於配置的核心線程數量(corePoolSize)的時候,如果當前有空閑的線程,則當這個空閑線程可以存在的時間,如果在keepAliveTime這個時間點內沒有新的任務使用這個線程,那麼這個線程將會結束,核心線程不會結束,但是如果配置了allowCoreThreadTimeOut = true,則當空閑時間超過keepAliveTime之後,線程也會被結束調,默認allowCoreThreadTimeOut = false,即表示默認情況下,核心線程會一直存在於線程池當中。
unit : 空閑線程保持連接時間(keepAliveTime)的時間單位
workQueue:阻塞的任務隊列,用來保存等待需要執行的任務。
threadFactory :線程工廠,可以根據自己的需求去創建線程的對象,設置線程的名稱,優先順序等屬性信息。
handler:當線程池中存在的線程數超過設置的最大值之後,新的任務就會被拒絕,可以自己定義一個拒絕的策略,當新任務被拒絕之後,就會使用hander方法進行處理。
在java中也提供了Executors工具類,在這個工具類中提供了多個創建線程池的靜態方法,其中包含newCachedThreadPool、newFixedThreadPool、newScheledThreadPool、newSingleThreadExecutor等。但是他們每個方法都是創建了ThreadPoolExecutor對象,不同的是,每個對象的初始 參數值不一樣;
Ⅳ 幾種開源Java Web容器線程池的實現方法簡介
其中Resin從V3.0後需要購買才能用於商業目的,而其他兩種則是純開源的。可以分別從他們的網站上下載最新的二進制包和源代碼。
作為Web容器,需要承受較高的訪問量,能夠同時響應不同用戶的請求,能夠在惡劣環境下保持較高的穩定性和健壯性。在HTTP伺服器領域,ApacheHTTPD的效率是最高的,也是最為穩定的,但它只能處理靜態頁面的請求,如果需要支持動態頁面請求,則必須安裝相應的插件,比如mod_perl可以處理Perl腳本,mod_python可以處理Python腳本。
上面介紹的三中Web容器,都是使用Java編寫的HTTP伺服器,當然他們都可以嵌到Apache中使用,也可以獨立使用。分析它們處理客戶請求的方法有助於了解Java多線程和線程池的實現方法,為設計強大的多線程伺服器打好基礎。
Tomcat是使用最廣的Java Web容器,功能強大,可擴展性強。最新版本的Tomcat(5.5.17)為了提高響應速度和效率,使用了Apache Portable Runtime(APR)作為最底層,使用了APR中包含Socket、緩沖池等多種技術,性能也提高了。APR也是Apache HTTPD的最底層。可想而知,同屬於ASF(Apache Software Foundation)中的成員,互補互用的情況還是很多的,雖然使用了不同的開發語言。
Tomcat 的線程池位於tomcat-util.jar文件中,包含了兩種線程池方案。方案一:使用APR的Pool技術,使用了JNI;方案二:使用Java實現的ThreadPool。這里介紹的是第二種。如果想了解APR的Pool技術,可以查看APR的源代碼。
ThreadPool默認創建了5個線程,保存在一個200維的線程數組中,創建時就啟動了這些線程,當然在沒有請求時,它們都處理等待狀態(其實就是一個while循環,不停的等待notify)。如果有請求時,空閑線程會被喚醒執行用戶的請求。
具體的請求過程是:服務啟動時,創建一個一維線程數組(maxThread=200個),並創建空閑線程(minSpareThreads=5個)隨時等待用戶請求。當有用戶請求時,調用 threadpool.runIt(ThreadPoolRunnable)方法,將一個需要執行的實例傳給ThreadPool中。其中用戶需要執行的實例必須實現ThreadPoolRunnable介面。 ThreadPool首先查找空閑的線程,如果有則用它運行要執行ThreadPoolRunnable;如果沒有空閑線程並且沒有超過 maxThreads,就一次性創建minSpareThreads個空閑線程;如果已經超過了maxThreads了,就等待空閑線程了。總之,要找到空閑的線程,以便用它執行實例。找到後,將該線程從線程數組中移走。接著喚醒已經找到的空閑線程,用它運行執行實例(ThreadPoolRunnable)。運行完ThreadPoolRunnable後,就將該線程重新放到線程數組中,作為空閑線程供後續使用。
由此可以看出,Tomcat的線程池實現是比較簡單的,ThreadPool.java也只有840行代碼。用一個一維數組保存空閑的線程,每次以一個較小步伐(5個)創建空閑線程並放到線程池中。使用時從數組中移走空閑的線程,用完後,再歸還給線程池。
Ⅵ 請高手幫忙解釋下這多線程的源代碼,每句注釋下 #include <stdio.h> #include <stdlib.h>
首先這是一個生產者和消費者問題。
生產者procer負責產生數據,然後通過put操作將數據放到緩沖區buf中。
消費者consumer負責顯示數據,通過get操作從緩沖區buf中讀取數據。
========》
先看主函數main(),
生產者和消費者分別用兩個線程來實現。
主函數中的pthread_create()函數就是用來創建這兩個線程的。
開始定義了兩個變數th_a,th_b用來記錄這兩個線程的線程號。
線程的程序體分別是procer,consumer。
接下來的pthread_join用來等待兩個線程結束。因為如果不等待,main函數的主線程會立即結束,而兩個子線程還來不及完全執行。
=======》
下面來分別看procer,consumer這兩個線程。
procer循環一百次,每次調用put往buffer中放數據,最後放一個OVER;
consumer循環用get從buffer中讀到數據並列印,直到讀取的數據位OVER數據時結束。
=======》
我們再分別來看put操作和get操作。
由於put和get都要訪問buf,buf就是一個臨界資源,為了解決這個臨界資源,在使用buf之前,要對它加鎖。
pthread_mutex_lock(b->lock)一個為信號量加鎖的函數。每個信號量只能加鎖一次(我說的可能不準確),如果執行該函數的時候,參數中的信號量已經被加鎖,則該函數阻塞,直到信號量被解鎖才繼續執行。這樣就能保證信號量所保護的臨界資源能夠被互斥的訪問。
structprodcons{
intbuffer[BUFFER_SIZE];/*這個就是循環緩沖區*/
pthread_mutex_tlock;/*這個是信號量,用來保證對緩沖區的互斥訪問*/
intreadpos,writepos;/*這兩個成員分別表示讀位置和寫位置*/
pthread_cond_tnotempty;/*這是表示緩沖區「非空」的條件信號量*/
pthread_cond_tnotfull;/*這是表示緩沖區「非滿」的條件信號量*/
};
buf是一個循環的緩沖區,我們先來看緩沖區為空和滿這兩種狀態時,讀、寫標記(readpos,writepos)的位置。
緩沖區為空時,readpos和writepos指在同一位置;
換從去為滿時,writepos位置的下一個位置就是readpos。
/*put負責把數據放到緩沖區*/
voidput(structprodcons*b,intdata)
{
//首先對互斥信號量進行加鎖
pthread_mutex_lock(&b->lock);
/*這里就是判斷緩沖區有沒有滿,用writepos+1與readpos比較,可以參考附圖。
*因為是循環緩沖區,所以要模BUFFER_SIZE。
*如果緩沖區滿,將在while中等待,直到緩沖區非滿,再繼續執行。
*/
while((b->writepos+1)%BUFFER_SIZE==b->readpos){
printf("waitfornotfull ");
//如果已經滿了,則等待消費者讀取了數據後發出「非滿」信號。
pthread_cond_wait(&b->notfull,&b->lock);
}
/*當緩沖區非滿時,將數據寫入緩沖區中writepos對應的位置*/
b->buffer[b->writepos]=data;
//更新writepos到下一個位置
b->writepos++;
//循環利用緩沖區空間,如果超過了最大值,則從頭開始。
if(b->writepos>=BUFFER_SIZE)b->writepos=0;
/*向消費者發送信號,告訴消費者緩沖取非空*/
pthread_cond_signal(&b->notempty);
//對互斥信號進行解鎖。
pthread_mutex_unlock(&b->lock);
}
/*--------------------------------------------------------*/
/*get負責從緩沖區中讀取數據*/
intget(structprodcons*b)
{
intdata;
//對互斥信號量進行加鎖
pthread_mutex_lock(&b->lock);
/*判斷緩沖區是否為空,為空則等待*/
while(b->writepos==b->readpos){
printf("waitfornotempty ");
pthread_cond_wait(&b->notempty,&b->lock);
}
/*讀取readpos位置的數據*/
data=b->buffer[b->readpos];
//更新readpos到下一個位置。
b->readpos++;
//循環利用緩沖區,回撥指針
if(b->readpos>=BUFFER_SIZE)b->readpos=0;
/*發信號給生產者,緩沖區非滿,可以放數據了*/
pthread_cond_signal(&b->notfull);
//對互斥信號量進行解鎖
pthread_mutex_unlock(&b->lock);
returndata;
}
Ⅶ java哪個框架的多線程源碼值得學習
最值得學的當屬Spring框架了。不過學之前還是先熟悉它裡面的各種概念好一些。 如果想零碎點學的話,Apache網站上的一些java工具,比如ant之類的,可以在了解其作用的情況下看源碼分析功能的實現。
Ⅷ java線程池怎麼實現
要想理解清楚java線程池實現原理,明白下面幾個問題就可以了:
(1):線程池存在哪些狀態,這些狀態之間是如何進行切換的呢?
(2):線程池的種類有哪些?
(3):創建線程池需要哪些參數,這些參數的具體含義是什麼?
(4):將任務添加到線程池之後運行流程?
(5):線程池是怎麼做到重用線程的呢?
(6):線程池的關閉
首先回答第一個問題:線程池存在哪些狀態;
查看ThreadPoolExecutor源碼便知曉:
[java]view plain
//runStateisstoredinthehigh-orderbits
privatestaticfinalintRUNNING=-1<<COUNT_BITS;
privatestaticfinalintSHUTDOWN=0<<COUNT_BITS;
privatestaticfinalintSTOP=1<<COUNT_BITS;
privatestaticfinalintTIDYING=2<<COUNT_BITS;
=3<<COUNT_BITS;
存在5種狀態:
<1>Running:可以接受新任務,同時也可以處理阻塞隊列裡面的任務;
<2>Shutdown:不可以接受新任務,但是可以處理阻塞隊列裡面的任務;
<3>Stop:不可以接受新任務,也不處理阻塞隊列裡面的任務,同時還中斷正在處理的任務;
<4>Tidying:屬於過渡階段,在這個階段表示所有的任務已經執行結束了,當前線程池中是不存在有效的線程的,並且將要調用terminated方法;
<5>Terminated:終止狀態,這個狀態是在調用完terminated方法之後所處的狀態;
那麼這5種狀態之間是如何進行轉換的呢?查看ThreadPoolExecutor源碼裡面的注釋便可以知道啦:
[java]view plain
*RUNNING->SHUTDOWN
*Oninvocationofshutdown(),perhapsimplicitlyinfinalize()
*(RUNNINGorSHUTDOWN)->STOP
*OninvocationofshutdownNow()
*SHUTDOWN->TIDYING
*Whenbothqueueandpoolareempty
*STOP->TIDYING
*Whenpoolisempty
*TIDYING->TERMINATED
*Whentheterminated()hookmethodhascompleted
從上面可以看到,在調用shutdown方法的時候,線程池狀態會從Running轉換成Shutdown;在調用shutdownNow方法的時候,線程池狀態會從Running/Shutdown轉換成Stop;在阻塞隊列為空同時線程池為空的情況下,線程池狀態會從Shutdown轉換成Tidying;在線程池為空的情況下,線程池狀態會從Stop轉換成Tidying;當調用terminated方法之後,線程池狀態會從Tidying轉換成Terminate;
在明白了線程池的各個狀態以及狀態之間是怎麼進行切換之後,我們來看看第二個問題,線程池的種類:
(1):CachedThreadPool:緩存線程池,該類線程池中線程的數量是不確定的,理論上可以達到Integer.MAX_VALUE個,這種線程池中的線程都是非核心線程,既然是非核心線程,那麼就存在超時淘汰機制了,當裡面的某個線程空閑時間超過了設定的超時時間的話,就會回收掉該線程;
(2):FixedThreadPool:固定線程池,這類線程池中是只存在核心線程的,對於核心線程來說,如果我們不設置allowCoreThreadTimeOut屬性的話是不存在超時淘汰機制的,這類線程池中的corePoolSize的大小是等於maximumPoolSize大小的,也就是說,如果線程池中的線程都處於活動狀態的話,如果有新任務到來,他是不會開辟新的工作線程來處理這些任務的,只能將這些任務放到阻塞隊列裡面進行等到,直到有核心線程空閑為止;
(3):ScheledThreadPool:任務線程池,這種線程池中核心線程的數量是固定的,而對於非核心線程的數量是不限制的,同時對於非核心線程是存在超時淘汰機制的,主要適用於執行定時任務或者周期性任務的場景;
(4):SingleThreadPool:單一線程池,線程池裡面只有一個線程,同時也不存在非核心線程,感覺像是FixedThreadPool的特殊版本,他主要用於確保任務在同一線程中的順序執行,有點類似於進行同步吧;
接下來我們來看第三個問題,創建線程池需要哪些參數:
同樣查看ThreadPoolExecutor源碼,查看創建線程池的構造函數:
[java]view plain
publicThreadPoolExecutor(intcorePoolSize,
intmaximumPoolSize,
longkeepAliveTime,
TimeUnitunit,
BlockingQueue<Runnable>workQueue,
ThreadFactorythreadFactory,
)
不管你調用的是ThreadPoolExecutor的哪個構造函數,最終都會執行到這個構造函數的,這個構造函數有7個參數,正是由於對這7個參數值的賦值不同,造成生成不同類型的線程池,比如我們常見的CachedThreadPoolExecutor、FixedThreadPoolExecutor
SingleThreadPoolExecutor、ScheledThreadPoolExecutor,我們老看看這幾個參數的具體含義:
<1>corePoolSize:線程池中核心線程的數量;當提交一個任務到線程池的時候,線程池會創建一個線程來執行執行任務,即使有其他空閑的線程存在,直到線程數達到corePoolSize時不再創建,這時候會把提交的新任務放入到阻塞隊列中,如果調用了線程池的preStartAllCoreThreads方法,則會在創建線程池的時候初始化出來核心線程;
<2>maximumPoolSize:線程池允許創建的最大線程數;如果阻塞隊列已經滿了,同時已經創建的線程數小於最大線程數的話,那麼會創建新的線程來處理阻塞隊列中的任務;
<3>keepAliveTime:線程活動保持時間,指的是工作線程空閑之後繼續存活的時間,默認情況下,這個參數只有線程數大於corePoolSize的時候才會起作用,即當線程池中的線程數目大於corePoolSize的時候,如果某一個線程的空閑時間達到keepAliveTime,那麼這個線程是會被終止的,直到線程池中的線程數目不大於corePoolSize;如果調用allowCoreThreadTimeOut的話,在線程池中線程數量不大於corePoolSize的時候,keepAliveTime參數也可以起作用的,知道線程數目為0為止;
<4>unit:參數keepAliveTime的時間單位;
<5>workQueue:阻塞隊列;用於存儲等待執行的任務,有四種阻塞隊列類型,ArrayBlockingQueue(基於數組的有界阻塞隊列)、LinkedBlockingQueue(基於鏈表結構的阻塞隊列)、SynchronousQueue(不存儲元素的阻塞隊列)、PriorityBlockingQueue(具有優先順序的阻塞隊列);
<6>threadFactory:用於創建線程的線程工廠;
<7>handler:當阻塞隊列滿了,且沒有空閑線程的情況下,也就是說這個時候,線程池中的線程數目已經達到了最大線程數量,處於飽和狀態,那麼必須採取一種策略來處理新提交的任務,我們可以自己定義處理策略,也可以使用系統已經提供給我們的策略,先來看看系統為我們提供的4種策略,AbortPolicy(直接拋出異常)、CallerRunsPolicy(只有調用者所在的線程來運行任務)、DiscardOldestPolicy(丟棄阻塞隊列中最近的一個任務,並執行當前任務)、Discard(直接丟棄);
接下來就是將任務添加到線程池之後的運行流程了;
我們可以調用submit或者execute方法,兩者最大的區別在於,調用submit方法的話,我們可以傳入一個實現Callable介面的對象,進而能在當前任務執行結束之後通過Future對象獲得任務的返回值,submit內部實際上還是執行的execute方法;而調用execute方法的話,是不能獲得任務執行結束之後的返回值的;此外,調用submit方法的話是可以拋出異常的,但是調用execute方法的話,異常在其內部得到了消化,也就是說異常在其內部得到了處理,不會向外傳遞的;
因為submit方法最終也是會執行execute方法的,因此我們只需要了解execute方法就可以了:
在execute方法內部會分三種情況來進行處理:
<1>:首先判斷當前線程池中的線程數量是否小於corePoolSize,如果小於的話,則直接通過addWorker方法創建一個新的Worker對象來執行我們當前的任務;
<2>:如果說當前線程池中的線程數量大於corePoolSize的話,那麼會嘗試將當前任務添加到阻塞隊列中,然後第二次檢查線程池的狀態,如果線程池不在Running狀態的話,會將剛剛添加到阻塞隊列中的任務移出,同時拒絕當前任務請求;如果第二次檢查發現當前線程池處於Running狀態的話,那麼會查看當前線程池中的工作線程數量是否為0,如果為0的話,就會通過addWorker方法創建一個Worker對象出來處理阻塞隊列中的任務;
<3>:如果原先線程池就不處於Running狀態或者我們剛剛將當前任務添加到阻塞隊列的時候出現錯誤的話,那麼會去嘗試通過addWorker創建新的Worker來處理當前任務,如果添加失敗的話,則拒絕當前任務請求;
可以看到在上面的execute方法中,我們僅僅只是檢查了當前線程池中的線程數量有沒有超過corePoolSize的情況,那麼當前線程池中的線程數量有沒有超過maximumPoolSize是在哪裡檢測的呢?實際上是在addWorker方法裡面了,我們可以看下addWorker裡面的一段代碼:
[java]view plain
if(wc>=CAPACITY||
wc>=(core?corePoolSize:maximumPoolSize))
returnfalse;
如果當前線程數量超過maximumPoolSize的話,直接就會調用return方法,返回false;
其實到這里我們很明顯可以知道,一個線程池中線程的數量實際上就是這個線程池中Worker的數量,如果Worker的大小超過了corePoolSize,那麼任務都在阻塞隊列裡面了,Worker是Java對我們任務的一個封裝類,他的聲明是醬紫的:
[java]view plain
privatefinalclassWorker
implementsRunnable
可以看到他實現了Runnable介面,他是在addWorker方法裡面通過new Worker(firstTask)創建的,我們來看看他的構造函數就知道了:
[java]view plain
Worker(RunnablefirstTask){
setState(-1);//
this.firstTask=firstTask;
this.thread=getThreadFactory().newThread(this);
}
而這里的firstTask其實就是我們調用execute或者submit的時候傳入的那個參數罷了,一般來說這些參數是實現Callable或者Runnable介面的;
在通過addWorker方法創建出來Worker對象之後,這個方法的最後會執行Worker內部thread屬性的start方法,而這個thread屬性實際上就是封裝了Worker的Thread,執行他的start方法實際上執行的是Worker的run方法,因為Worker是實現了Runnable介面的,在run方法裡面就會執行runWorker方法,而runWorker方法裡面首先會判斷當前我們傳入的任務是否為空,不為空的話直接就會執行我們通過execute或者submit方法提交的任務啦,注意一點就是我們雖然會通過submit方法提交實現了Callable介面的對象,但是在調用submit方法的時候,其實是會將Callable對象封裝成實現了Runnable介面對象的,不信我們看看submit方法源碼是怎麼實現的:
[java]view plain
public<T>Future<T>submit(Callable<T>task){
if(task==null)thrownewNullPointerException();
RunnableFuture<T>ftask=newTaskFor(task);
execute(ftask);
returnftask;
}
看到沒有呢,實際上在你傳入實現了Callable介面對象的時候,在submit方法裡面是會將其封裝成RunnableFuture對象的,而RunnableFuture介面是繼承了Runnable介面的;那麼說白了其實就是直接執行我們提交任務的run方法了;如果為空的話,則會通過getTask方法從阻塞隊列裡面拿出一個任務去執行;在任務執行結束之後繼續從阻塞隊列裡面拿任務,直到getTask的返回值為空則退出runWorker內部循環,那麼什麼情況下getTask返回為空呢?查看getTask方法的源碼注釋可以知道:在Worker必須需要退出的情況下getTask會返回空,具體什麼情況下Worker會退出呢?(1):當Worker的數量超過maximumPoolSize的時候;(2):當線程池狀態為Stop的時候;(3):當線程池狀態為Shutdown並且阻塞隊列為空的時候;(4):使用等待超時時間從阻塞隊列中拿數據,但是超時之後仍然沒有拿到數據;
如果runWorker方法退出了它裡面的循環,那麼就說明當前阻塞隊列裡面是沒有任務可以執行的了,你可以看到在runWorker方法內部的finally語句塊中執行了processWorkerExit方法,用來對Worker對象進行回收操作,這個方法會傳入一個參數表示需要刪除的Worker對象;在進行Worker回收的時候會調用tryTerminate方法來嘗試關閉線程池,在tryTerminate方法裡面會檢查是否有Worker在工作,檢查線程池的狀態,沒問題的話就會將當前線程池的狀態過渡到Tidying,之後調用terminated方法,將線程池狀態更新到Terminated;
從上面的分析中,我們可以看出線程池運行的4個階段:
(1):poolSize < corePoolSize,則直接創建新的線程(核心線程)來執行當前提交的任務;
(2):poolSize = corePoolSize,並且此時阻塞隊列沒有滿,那麼會將當前任務添加到阻塞隊列中,如果此時存在工作線程(非核心線程)的話,那麼會由工作線程來處理該阻塞隊列中的任務,如果此時工作線程數量為0的話,那麼會創建一個工作線程(非核心線程)出來;
(3):poolSize = corePoolSize,並且此時阻塞隊列已經滿了,那麼會直接創建新的工作線程(非核心線程)來處理阻塞隊列中的任務;
(4):poolSize = maximumPoolSize,並且此時阻塞隊列也滿了的話,那麼會觸發拒絕機制,具體決絕策略採用的是什麼就要看我們創建ThreadPoolExecutor的時候傳入的RejectExecutionHandler參數了;
接下來就是線程池是怎麼做到重用線程的呢?
個人認為線程池裡面重用線程的工作是在getTask裡面實現的,在getTask裡面是存在兩個for死循環嵌套的,他會不斷的從阻塞對列裡面取出需要執行的任務,返回給我們的runWorker方法裡面,而在runWorker方法裡面只要getTask返回的任務不是空就會執行該任務的run方法來處理它,這樣一直執行下去,直到getTask返回空為止,此時的情況就是阻塞隊列裡面沒有任務了,這樣一個線程處理完一個任務之後接著再處理阻塞隊列中的另一個任務,當然在線程池中的不同線程是可以並發處理阻塞隊列中的任務的,最後在阻塞隊列內部不存在任務的時候會去判斷是否需要回收Worker對象,其實Worker對象的個數就是線程池中線程的個數,至於什麼情況才需要回收,上面已經說了,就是四種情況了;
最後就是線程池是怎樣被關閉的呢?
涉及到線程池的關閉,需要用到兩個方法,shutdown和shutdownNow,他們都是位於ThreadPoolExecutor裡面的,對於shutdown的話,他會將線程池狀態切換成Shutdown,此時是不會影響對阻塞隊列中任務執行的,但是會拒絕執行新加進來的任務,同時會回收閑置的Worker;而shutdownNow方法會將線程池狀態切換成Stop,此時既不會再去處理阻塞隊列裡面的任務,也不會去處理新加進來的任務,同時會回收所有Worker;