⑴ 兩位數乘以兩位數的巧演算法
兩灶尺位數乘以兩位數的巧算例子26×98
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
26×98
=26×100-26×2
=2600-52
=2548
擴隱者高展資料&豎式計算:先將兩乘數末位對齊,然後分別使用第二個乘數,由末位起對每一位數依次乘上一個乘數,最後將所計算結果累加即為乘積,如果乘數為小數可先將其擴大相應的倍數,最後乘積在縮小相應的倍數;
解題過程:
步驟嫌差一:8×26=208
步驟二:9×26=2340
根據以上計算結果相加為2548
存疑請追問,滿意請採納
⑵ 二位數乘二位數的速算
兩位數的乘法是一般是小學四年級以後就要學會的一種基礎數學計算方法,也是今後學習數學必不可少的內容。對於數學運算來說,學會兩位數的乘法速算技巧,對於提叢扒並高數學運算效率、提高考試成績具有重要的幫助。兩位數乘兩位數的速演算法有頭乘頭,尾加尾,尾乘尾;一個頭加1後,頭乘頭,尾乘尾;頭互補,尾相同;一個頭加1後,頭乘頭,尾乘尾。
1、頭乘頭,尾加尾,尾乘尾:這種演算法是在十幾乘十幾的時候可以直接使用,但是一定要注意,個位相乘的話,不夠兩位數的時候要用0來佔位。
2、一個頭加1後,頭乘頭,尾乘尾:這句話的意思就是頭相同,尾互補,主要是首同末和十,也就是十位數完全相同,個位數相加的和剛好也等於10的時候可以直接使用。在兩位數的乘法算式中滲跡,如果兩個乘數的十位數是相同的,先將第一個乘數加上第二個乘數的個位數,然後尾數相加。
3、頭乘頭加尾,尾乘尾:這句話的意思就是頭互補,尾相同,末同首和十,個位數完全相同,十位數剛好相加等於10 的時候則可以直接使用。如果兩個乘數的個位數是相同的,把十位數部分進行一次相乘和相乘,尾數個位數部分再相乘這一點需要注意的是兩數相同的各個位數之積為得數的後兩位數,不足10的時候,在十位上補0就可以了。。
4、一個頭加1後,頭乘頭,尾乘尾:第一個數乘數互補,另外一個乘數數字相同的時候使用,這一點此者也要注意一個知識點,那就是個位相乘,不夠兩位數的時候要用0來佔位。
數學速演算法是指利用數與數之間的特殊關系進行較快的加減乘除運算的計算方法。數學速演算法分為金華速算、魏德武速算、史豐收速算以及古人創造的「袖裡吞金」四大類速算方法。
⑶ 兩位數乘兩位數的快速演算法
兩位數乘兩位數的快速演算法如下:
先用一個乘數個位上的數去乘另一個乘數,得數的末位與乘數的個位對齊,再用這個乘數十歷拆拿位上的數依次去乘另一個乘數,得數的末位與乘數的十位對齊,最後,把兩次所得的結果相加。
乘法(multiplication)是指將相同的數加起來的快捷方式。其運算結果稱為積,「x」是乘號。從哲學角度解析,乘法是加法的量變導致的質變結果。整數(包括負數),有理數(分數)和實數的乘法由這個基本定義的系統泛化來定義。
乘法也可以被視為計算排列在矩形(整數)中的對象或查找其邊長度給定的矩形的區域。 矩形的區域不取決於首先測量哪一側,這說明了交換屬性。 兩種測量的產物是一種御蔽新型的測量,例如,將矩形的兩邊的長度相乘給出其面積,這是尺寸分析的主題。
4、數學不僅是一門科學,而且是一種普遍適用的技術。它是科學的大門和鑰匙,學數學是令自己變得理性的一個很重要的措施,數學本身也有自身的樂趣。
5、數學能讓你思考任何問題的時候都比較縝密,而不至於思緒紊亂。還能使你的腦子反映靈活,對突發事件的處理手段也更理性。
⑷ 兩位數乘11的速算方法
兩位數乘11的速算方法可以總結為一句口訣:兩頭一拉,中間一加,滿十進一。以34×11為例告中,3+4=7,然後再把7放在3和4的中間,得出結果為374;如計算84×11,8+4=12,按照滿十進一的方法,結果為924。
小學1至6年級數學知識總結:
小學一年級:九九乘法口訣表,學會基礎加減乘:背誦好九九乘法口訣表,做到熟悉個位數的相乘;
小學二年襪塌山級:完善乘法口訣表,牢固一年級知識,學會除混合運算,基礎幾何圖形;
小學三年級:學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數;
小學四年級:線角自然數整數,素因數梯形對稱,分數小數計算;
小學五年級:分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積;
小學六年衫橘級:比例百分比概率,圓扇圓柱及圓錐。
⑸ 兩個一樣的數相乘怎麼巧算
一般兩位數的平方,都可以用這樣的方法來計算:用這個數加它的個位數再乘以它的十位數,將得數乘10,然後加個位數的平方即可。 就是所謂的「本數加其尾,乘頭居首位,為求平方積,再加尾乘尾。」 個位為1、2、3的兩位數的平段侍蔽方計算方法: 對於個位是1、2、3的兩位數,可以用這個數加它的個位數再乘以它的十位數,最後在算出的得數後面添加個位數的平方即可。 例如: 求23的平方,將23加3得26,26再乘2得52,52後面添加3的平方9,即可得529,這就是23平方的得數。 再比談陪如求52的平方,可將52加2得54,再乘以5得270,後面添加2的平方4,即可得2704。 個位是4、6、7、8的兩位數。 這一組兩位數的平方計演算法和第一組兩位數平方的計演算法相似,不同之處是因為這一組兩位數個位的平方均超過10,所以在最後添加個位數的平方時須把它的十位數進到末位那個數,再把它的個位數添列到後面。 例如: 求26的平方,26 + 6 得 32 ,32×2得 64,因為個位數6的平方是36 ,須將3進到末一位,所以,64 + 3得67 ,67後面添加6得676,這就是26的平方結果。 再比如求48的平方,48 + 8 得56 ,56×4得224,224+6 (64的十位數)得 230 ,230後面添加 4 (64的個位數),即得 2304 。 以上演算法看似步驟多些,但都是極易心算的,熟練之後會覺得非常的簡便快捷。 對於個位是 5 的兩位數,當然也可以用上述方法心算,還有一種更簡便的方法: 只須將十位數加1再乘十位數,後邊再添加 25 即可得出結果。 例如求 45 的平方,用4 乘5 (4+1)得 20 ,20 後面添加 25 ,即可得出 2025 ,就是 45 的平方。 再如求 85 的平方,8×9 得 72,後面添加 25 ,即得 7225 。 此法還可用於一些易算的三位數的平方握州,如求 105 的平方,10×11得 110 ,那麼 105 的平方就是 11025 了; 求205的平方,20×21得 420 ,那麼 205 的平方就是 42025 了。 最後我們來看個位是9的兩位數的平方心演算法。 個位是9的兩位數計算平方時,可用「這個數加1」的平方,減去「這個數加1」的2倍,再加1即可得出結果。 例如求 29 的平方,「 29+1 」的平方是 900 ,減去「 29+1 」的2倍60 ,得數是 840 ,再加1得 841 。 再比如求 59 的平方,60的平方是 3600 ,減去60的2倍得3480,最後加1即得 3481
⑹ 兩位數的乘法有哪些
兩位數的乘法列舉如下:
1、十幾乘以十幾是頭乘頭、尾相加、尾相乘。
比如12×13=156。
2、二十幾乘以二十幾,則任意兩位數乘以任意兩位數,其方法是頭乘頭、尾乘尾、頭乘以後面的尾,尾乘以後 面的頭,兩個得數相加再補加個0。
比如:24×25,用2×2=4,4×5=20,2×4=8,2×5= 10,10+8=18,然後補0,也就是180。實際是24×25=420+180=600。
3、十位相同個位不同的兩位數相乘。被乘數加上乘數個位,和與十位數整數相乘,積作為前積,個位數與個位數相乘作為後積加上去。
比如:43 × 46=(43 + 6)× 40 = 1960,89 × 87=(89 + 7)× 80 = 7680。
兩位數乘法如何巧算?
1、首位是1的兩位數相乘。從個位起:
兩尾數相乘,作個位。注意進位。
兩尾數相加,仿基作十位備檔謹。注意進位。
兩首數相乘,作百位。
如:18×19= 342:8×9=72,則進7,2作個位 。
2、末位是1的兩位數相乘。從個位起:
兩尾數蠢彎相乘,作個位。肯定是1。
兩首位相加,作十位。注意進位。
兩首數相乘,作百位和千位。
如:41×71=2911 31×21=651。
⑺ 巧算兩位數與11相乘
一個兩位數與11相乘規律:首尾不變,中間相加,滿十向前進一。
例子:1、24×11=264
計算過程:24兩數分開,中間相加,即 2+4=6,最後結果264。
2、45×11=495
計算過程:45兩數分開,中虧脊旁間相加,即4+5=9,最後結果495。
3、68×11=748
計算過程:68兩數分開,中間相加,即6+8=14 ,最後結果748。
(7)兩位數巧算日本演算法擴展閱讀
巧算規律
1、加法速算:計算任意位數野差的加法速算,方法很簡單學習者只要熟記一種加法速算通用口訣 --"本位相加(針對進位數) 減加補,前位相加多加一 "就可以徹底解決任意位數從高位數到低位數的加法速算方法,
比如:銷橡67+48=(6+5)×10+(7-2)=115
758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
2、減法速算:計算任意位數的減法速算方法也同樣是用一種減法速算通用口訣 "本位相減(針對借位數) 加減補,前位相減多減一 "就可以徹底解決任意位數從高位數到低位數的減法速算方法。
比如:67-48=(6-5)×10+(7+2)=19
758-496=(7-5)×100+(5+1)×10+8-6=262
3、乘法速算(a-c)×d+(b+d-10)×c,適用於首同尾任意的二位數乘法速算。
比如:26×28, 47×48,87×84等等,其嬗數一目瞭然分別等於"8","20 "和"8"即可。
⑻ 速算巧演算法
一、30以內的兩個兩位數乘積的心算速算 1、兩個因數都在20以內 任意兩個20以內的兩個兩位數的積,都可以將其中一個因數的」尾數」移加到另一個因數上,然後補一個0,再加上兩「尾數」的積。例如: 11×11=120+1×1=121 12×13=150+2×3=156 13×13=160+3×3=169 14×16=200+4×6=224 16×18=240+6×8=288 2、兩個因數分別在10至20和20至30之間 對於任意這樣兩個因數的積,都可以將較小的一個因數的「尾數」的2倍移加到另一個因數上,然後補一個0,再加上兩「尾數」的積。例如: 22×14=300+2×4=308 23×13=290+3×3=299 26×17=400+6×7=442 28×14=360+8×4=392 29×13=350+9×3=377 3、兩個因數都在20至30之間 對於任意這樣兩個因數的積,都可以將其中一個因數的「尾數」移加到另一個因數上求積,然後再加上兩「尾數」的積。例如: 22×21=23×20+2×1=462 24×22=26×20+4×2=528 23×23=26×20+3×3=529 21×28=29×20+1×8=588 29×23=32×20+9×3=667 掌握此法後,30以內兩個因數的積,都可以用心算快速求出結果。 二、大於70的兩個兩位數乘積的心算速算 對於任意這樣兩個因數的積,都可以用其中的一個因數將另一個因數補成100求積,再加上100分別與這兩個因數差的積。例如: 99×99=98×100+1×1=9801 97×98=95×100+3×2=9506 93×94=87×100+7×6=8742 88×93=81×100+12×7=8184 84×89=73×100+16×11=7476 78×79=57×100+22×21=6162 75×75=50×100+25×25=5625 掌握上述兩方法後,30以內兩個因數的積和大於70的兩個兩位數的積,都可以用心算快速求出結果。 三、大於50小於70的兩個兩位數乘積的心算速算 對於任意這樣兩個因數的積,都可以將較小一個因數大於50的部分移加到另一個因數上求積,然後再加上這兩個因數分別與50差的積。(運用一個因數乘以50等於將這個因數平分後乘以100)例如: 51×51=26×100+1×1=2601 53×59=31×100+3×9=3127 54×62=33×100+4×12=3348 56×66=36×100+6×16=3696 66×66=41×100+16×16=4356 四、大於30小於50的兩個兩位數乘積的心算速算 對於任意這樣兩個因數的積,都可以用較小一個因數將另一個因數補成50求積,然後再加上50分別與這兩個因數差的積。(運用一個因數乘以50等於將這個因數平分後乘以100)例如: 49×49=24×100+1×1=2401 46×48=22×100+4×2=2208 44×42=18×100+6×8=1848 37×47=17×100+13×3=1739 32×46=14×100+18×4=1472 五、乘法口算速演算法 乘法口算速演算法是一種簡便的,極易被掌握的乘法心算速演算法,是將傳統演算法改為補整法,例如:49×47可改為50×46+1×3=2303, 98×94可改為 100×92+2×6=9212;移尾法,例如:51×53可改為50×54+1×3=2703, 31×32可改為30×33+1×2=992;補商法,例如:84×24可改為100×20+4×4=2016等等,下面逐個介紹,並注意一個因數乘以50等於將這個因數平分後乘以100。 1、補整法 任意兩個因數的積,都可以用其中的一個因數將另一個因數補成「整數」求積,然後再加上這個「整數」分別與這兩個因數差的積。例如: 19×19=18×20+1×1=361 27×28=25×30+3×2=756 46×48=44×50+4×2=2208 94×99=93×100+6×1=9306 87×98=85×100+13×2=8526 38×48=36×50+12×2=1824 補整法比較適用於首接近尾之和不小於10的乘法,特別適用於兩個因數都略小於20、30、50、100的乘法。 2、移尾法 任意兩個因數的積,都可以將其中一個因數的」尾數」移加到另一個因數上求積,然後再加上這兩個因數分別與這個「整數」差的積。例如: 14×12=16×10+4×2=168 22×23=25×20+2×3=506 55×51=56×50+5×1=2805 62×54=66×50+12×4=3348 43×37=50×30+13×7=1591 112×103=115×100+12×3=11536 移尾法比較適用於首接近尾之和不大於10的乘法,特別適用於兩個因數都略大於10、20、30、50、100的乘法。 3、補商法 令A、B、C、D為待定數字,則任意兩個因數的積都可以表示成: AB×CD=(AB+A×D/C)×C0+B×D 補商法特別適用於C能整除A×D的乘法。例如: 23×13=29×10+3×3=299 33×12=39×10+3×2=396 46×11=50×10+6×1=506 28×77=30×70+8×7=2156 82×55=90×50+2×5=4510 81×24=97×20+1×4=1944 76×36=90×30+6×6=2736 當C不能整除A×D時,AB可加A×D/C的整數部分運算,余幾就在原結果上再加幾十。例如: 84×65=90×60+40+4×5=5460 73×32=77×30+20+3×2=2336 掌握此法後,130以內兩個因數的積,基本上都可以用心算快速求出結果。 六、接近100的兩個數乘積的心算速算技巧 對於計算任意兩個大於90的兩位數的乘積及任意兩個小於110的三位數的乘積,運用巧妙的算速方法,人人都可以做到准確、快速、達到心算一口清。 1、兩個都小於11 0的三位數的乘積 對於任意兩個小於11 0的三位數的乘積,其積必定是五位數,且左邊三位數總是等於其中一個因數加上另一個因數的「尾數」,右邊兩位數總是等於兩「尾數」的積。例如: 108×109=11772。左邊三位數等於108+9=117,右邊兩位數等於8×9=72,同理: 105×107=11342 104×109=11336 102×103=10506,右邊兩位數等於2×3=6,因為是兩位,所以應寫成06,同理: 101×109=11009 103×103=10609 2、任意兩個大於90的兩位數的乘積 對於任意兩個大於90的兩位數的乘積,其積必定是四位數,且左邊兩位數總是等於80加上兩個因數的「尾數」,右邊兩位數總是等於100分別與這兩個因數差的積。例如: 91×92=8372,左邊兩位數等於80+1+2=83,右邊兩位數等於(100-91)×(100-92)=72,同理: 93×93=8649 94×94=8836 95×96=9120 99×98=9702,右邊兩位數等於1×2=2,因為是兩位,所以應寫成02,同理: 99×99=9801 97×97=940950道常見的速算題:1)1.5x1.3x4=7.8
2)2.7+3.1=5.8
3)2.9+3.2=6.1
4)21-4.4-5.6=11
5)17x12=204
6)25x5=125
7)4.8x2.1=14.4
8)2.5x30=75
9)7.8+6.5+2.2=16.5
10)15x0.5=7.5
11)3.5/14=0.25
12)9.3x0.25x4=9.3
13)13+5.2=18.2
14)28+33+23=84
15)10+11+9=30
16)84/30=2.8
17)2.5x12=30
18)12.53-1.35=1.18
19)0.8x2.5=2
20)10-7.3+2.5=5.2
21)1.35x2=2.7
22)0.47+0.34=0.81
23)4.6x5=23
24)5.4/18=0.3
25)2.99+0.65=3.64
26)1.6-0.54=1.06
27)4-0.04=3.06
28)3.5x4=14
29)1/0.125=8
30)6.25x5=31.25
31)61-1.25=59.75
32)4cm= 0.04 m
33)32m= 320 dm
34)153-98=55
35)32.6+19.9=53.5
36)0.5x101-0.5=50
37)40x0.25=10
38)9000/72=125
39)13.6+2.8.6.4=22.8
40)5.4/18=3
41)240x1.5=3
42)240x1.5=360
43)1.25x0.7x8=7
44)80/0.5=40
45)5.2-0.5=4.7
46)0.8x12=9.6
47)1-0.19=0.81
48)0.49+0.22=0.71
49)2.1/30=0.07
50)25/0.5=50
參考資料: http://wenku..com/view/db91037da26925c52cc5bf2a.html
⑼ 兩位數加減法簡便方法有幾種
1、加法時可將其和為10相關數字先加,例如3與7,2與8,或1、4與5各數字可先加,以便計算。
例一.67+83+28+84=262
(4 + 2+1 +3 =1; 262→1, 1=1。)
思路:個位數7,3,8,4,=22;(左手進二)
十位數6,8,2,8,2,=26;
2、連減法
如:95-28=?先減去與被減數個位數相同部分的數(即個位是被減數的個位,十位是減數的十位),再減去少減去部分的數。過程:先用95-25=70。再用70-3=67即可。
3、先減後加法。
如:76-38=?可以先用整十數70減去減數38,再用這個差加上被減數的個位數。
4、求知識數字位置顛倒的兩個兩位數的和
口訣:一個數的十位數加上他的個位數乘以11等於和。
例題:
56+65=(5+6)×11=121
13+31= (1+3)×11=44
98+89=(9+8)×11=187
5、 求只是數字位置顛倒兩個兩位數的差
口訣:一個數的十位數減去他的個位數乘以9。
例題:
98-89=(9-8)×9=9;
82-28 = (8-2)×9=54;
74-47=(7-4)×9=27;