㈠ 根據圖像處理運算的輸入信息和輸出信息的類型,圖像處理演算法可分為哪三大類並各舉一個例子
圖像處理,是對圖像進行分析、加工、和處理,使其滿足視覺、心理以及其他要求的技術。圖像處理是信號處理在圖像域上的一個應用。目前大多數的圖像是以數字形式存儲,因而圖像處理很多情況下指數字圖像處理。此外,基於光學理論的處理方法依然佔有重要的地位。
圖像處理是信號處理的子類,另外與計算機科學、人工智慧等領域也有密切的關系。
傳統的一維信號處理的方法和概念很多仍然可以直接應用在圖像處理上,比如降噪、量化等。然而,圖像屬於二維信號,和一維信號相比,它有自己特殊的一面,處理的方式和角度也有所不同。
目錄
[隱藏]
* 1 解決方案
* 2 常用的信號處理技術
o 2.1 從一維信號處理擴展來的技術和概念
o 2.2 專用於二維(或更高維)的技術和概念
* 3 典型問題
* 4 應用
* 5 相關相近領域
* 6 參見
[編輯] 解決方案
幾十年前,圖像處理大多數由光學設備在模擬模式下進行。由於這些光學方法本身所具有的並行特性,至今他們仍然在很多應用領域佔有核心地位,例如 全息攝影。但是由於計算機速度的大幅度提高,這些技術正在迅速的被數字圖像處理方法所替代。
從通常意義上講,數字圖像處理技術更加普適、可靠和准確。比起模擬方法,它們也更容易實現。專用的硬體被用於數字圖像處理,例如,基於流水線的計算機體系結構在這方面取得了巨大的商業成功。今天,硬體解決方案被廣泛的用於視頻處理系統,但商業化的圖像處理任務基本上仍以軟體形式實現,運行在通用個人電腦上。
[編輯] 常用的信號處理技灶大術
大多數用於一維信號處理的概念都有其在二維圖像信號領域的延伸,它們中的一部分在二維情形下變得十分復雜。同時圖像處理森岩也具有自身一些新的概念,例如,連通性、旋轉不變性,等等。這些概念僅對二維或更高維的情況下才有非平凡的意義。
圖像處理中常用到快速傅立葉變換,因為它可以減小數據處理量和處理時間。
[編輯] 從一維信號處理擴展來的技術和概念
* 解析度(Image resolution|Resolution)
* 動態范圍(Dynamic range)
* 帶寬(Bandwidth)
* 濾波器設計(Filter (signal processing)|Filtering)
* 微分運算元(Differential operators)
* 邊緣檢測(Edge detection)
* Domain molation
* 降噪(Noise rection)
[編輯] 專用於二維(或更高維)的技術和概念
* 連通性(Connectedness|Connectivity)
* 旋轉不變性(Rotational invariance)
[編輯] 典型問題
* 幾何變換(geometric transformations):包括放大、縮小、旋轉等。
* 顏色處理(color):顏色空間的轉化、亮度以及對比度的調節、顏色修正等。
* 圖像合成(image composite):多個圖像的加、減、組合、拼接。
* 降噪(image denoising):研究各種針對二維圖像的去噪濾波器或者信號處理技術。
* 邊緣檢測(edge detection):進行邊緣或者其他局部特徵提取。
* 分割(image segmentation):依據不同標隱春豎准,把二維圖像分割成不同區域。
* 圖像製作(image editing):和計算機圖形學有一定交叉。
* 圖像配准(image registration):比較或集成不同條件下獲取的圖像。
* 圖像增強(image enhancement):
* 圖像數字水印(image watermarking):研究圖像域的數據隱藏、加密、或認證。
* 圖像壓縮(image compression):研究圖像壓縮。
[編輯] 應用
* 攝影及印刷 (Photography and printing)
* 衛星圖像處理 (Satellite image processing)
* 醫學圖像處理 (Medical image processing)
* 面孔識別, 特徵識別 (Face detection, feature detection, face identification)
* 顯微圖像處理 (Microscope image processing)
* 汽車障礙識別 (Car barrier detection)
[編輯] 相關相近領域
* 分類(Classification)
* 特徵提取(Feature extraction)
* 模式識別(Pattern recognition)
* 投影(Projection)
* 多尺度信號分析(Multi-scale signal analysis)
* 離散餘弦變換(The Discrete Cosine Transform)
㈡ 數字圖像處理的主要方法
數字圖像處理的工具可分為三大類:
第一類包括各種正交變換和圖像濾波等方法,其共同點是將圖像變換到其它域(如頻域)中進行處理(如濾波)後,再變換到原來的空間(域)中。
第二類方法是直接在空間域中處理圖像,它包括各種統計方法、微分方法及其它數學方法。
第三類是數學形態學運算,它不同於常用的頻域和空域的方法,是建立在積分幾何和隨機集合論的基礎上的運算。
由於被處理圖像的數據量非常大且許多運算在本質上是並行的,所以圖像並行處理結構和圖像並行處理演算法也是圖像處理中的主要研究方向。
(2)圖像處理按功能分類演算法擴展閱讀
1、數字圖像處理包括內容:
圖像數字化;圖像變換;圖像增強;圖像恢復;圖像壓縮編碼;圖像分割;圖像分析與描述;圖像的識別分類。
2、數字圖像處理系統包括部分:
輸入(採集);存儲;輸出(顯示);通信;圖像處理與分析。
3、應用
圖像是人類獲取和交換信息的主要來源,因 此,圖像處理的應用領域必然涉及到人類生活和工作的方方面面。隨著人類活動范圍的不斷擴大,圖像處理的應用領域也將隨之不斷擴大。
主要應用於航天和航空、生物醫學工程、通信 工程、工業和工程、軍事公安、文化藝術、機器人視覺、視頻和多媒體系統、科學可視化、電子商務等方面。
㈢ 圖像處理與分類方法
(一)圖像處理方法
全伍段景鑽孔攝像系統實現視頻圖像數字化的基礎是用C++語言編制而成的採集軟體和分析軟體。採集軟體使探測到的鑽孔視頻圖像數字化,再通過分析軟體對其中的信息圖像進行識別,完成對數字圖像和重要信息的存儲和維護。
採集軟體(圖9-17)的主要功能如下:
1)捕獲圖像。通過新建gra格式的文件捕獲視頻數據,並形成數字圖像。在進行圖像捕獲之前需設定視頻數據的工作環境(鑽孔孔徑、探頭直徑等),以滿足數據轉換的要求。
2)實時顯示。在進行圖像捕獲的同時將處理後的直觀圖像快速地顯示出來,便於實時監控數據處理過程。
3)圖像存儲。將捕獲後的數字圖像以gra文件的格式存儲於計算機硬碟中。
4)圖像識別。對某幀或某些幀圖像中的有用信息進行計算分析,從中獲得具體數據,主要包括:識別羅盤圖像並計算羅盤方位,識別深度數據。
5)深度修正。對視頻圖像中的深度數據與真實的深度進行修正。
圖9-17 數據採集軟體(BHImgCapt)
數據分析軟體(圖9-18)的主要功能如下:
1)形成三維圖像。三維圖像就是三維鑽孔岩心圖,它是通過鑽孔孔壁圖模擬出來的,也稱為「虛擬」鑽孔岩心圖,形成的三維圖像便於更直觀地觀測孔壁。
2)計算腔大譽分析。計算分析的功能包括計算結構面產狀和隙寬、建立結構面資料庫、備注結構面的幾何形態等,為進一步對結構面進行統計分析創造條件。
3)列印輸出。統計分析形成的任何圖像都可以彩色列印輸出。
圖9-18 數據分析軟體(BHImgCapt)
(二)統計分類方法
為了更直觀地展現經數據採集與分析軟體獲得的孔內結構面數據(結構面產狀、深度、張開度及裂隙填充情況等)分布特徵,首先藉助 Microsoft Excel的數據統計功能將結構面數據按傾角和張開度大小進行分類匯總(表9-4和表9-5),然後用統計分析軟體Origin和DIPS繪制裂隙的傾向玫瑰花仿源圖和產狀極點密度圖(圖9-19和圖9-20)。
表9-4 按傾角大小的分類匯總
表9-5 按隙寬大小的分類匯總
圖9-19 Origin軟體界面及傾向玫瑰花圖
圖9-20 Dips軟體界面及產狀極點密度圖
㈣ 圖像處理演算法包含技術
1.輸入圖像雜訊的平滑
2.對比度增強和邊緣檢測信號的預處理
3.分類識別結果的在處理
㈤ 常用的像素操作演算法:Resize、Flip、Rotate
圖像縮放是把原圖像按照目標尺寸放大或者縮小,是圖像處理的一種。
圖像縮放有多種演算法。最為簡單的是最臨近插值演算法,它是根據原圖像和目標圖像的尺寸,計算縮放的比例,然後根據縮放比例計算目標像素所依據的原像素,過程中自然會產生小數,這時就採用四捨五入,取與這個點最相近的點。
除此之外,還有雙線性插值演算法。
其公式如下:
f(i+u,j+v) =(1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1)
其中U和V表示浮點坐標的小數部分,顯然離目標點距離越近的點的權重越大,這也正符合目標點的值與離他最近的點最接近這一事實。
cv4j 的resize目前支持這兩種演算法。通過Resize類的源碼,可以看到有兩個常量
使用最臨近插值演算法,將原圖縮小到0.75倍。
使用雙線性插值演算法,將原圖放大2倍。
效果如下:
Flip是翻轉的意思,也被稱為鏡像變換。又可以分為水平鏡像和垂直鏡像,水平鏡像即將圖像左半部分和右半部分以圖像豎直中軸線為中心軸進行兌換,而豎直鏡像則是將圖像上半部分和下半部分以圖像水平中軸線為中心軸進行兌換。
flip的演算法很簡單
實現具體的左右翻轉
實現具體的上下翻轉
效果如下:
圖像旋轉是指圖像以某一點為中心旋轉一定的角度,形成一幅新的圖像的過程。當然這個點通常就是圖像的中心。既然是按照中心旋轉,自然會有這樣一個屬性:旋轉前和旋轉後的點離中心的位置不變。
圖像的旋轉是圖像幾何變換的一種,旋轉前後的圖像的像素的RGB都是沒有改變的,改變的只是每一個像素的所在位置。
cv4j 提供兩種旋轉的演算法:NormRotate和FastRotate
下面以NormRotate為例,使用起來很簡單,旋轉120度,背景為紅色。
效果如下:
cv4j 是 gloomyfish 和我一起開發的圖像處理庫,純java實現,我們已經分離了一個Android版本和一個Java版本。
像素操作是 cv4j 的基本功能之一,本文介紹了三種常見的變換。我們可以通過圖像的Resize、Flip、Rotate變換來豐富圖片數據的多樣性。
如果您想看該系列先前的文章可以訪問下面的文集:
http://www.jianshu.com/nb/10401400
㈥ 圖像處理演算法有哪些
多了:圖像分割、增強、濾波、形態學,等等,推薦看數字圖像處理那本厚書
㈦ 在圖像處理中有哪些演算法
1、圖像變換:
由於圖像陣列很大,直接在空間域中進行處理,涉及計算量很大。採用各種圖像變換的方法,如傅立葉變換、沃爾什變換、離散餘弦變換等間接處理技術,將空間域的處理轉換為變換域處理,可減少計算量,獲得更有效的處理。它在圖像處理中也有著廣泛而有效的應用。
2、圖像編碼壓縮:
圖像編碼壓縮技術可減少描述圖像的數據量,以便節省圖像傳輸、處理時間和減少所佔用的存儲器容量。
壓縮可以在不失真的前提下獲得,也可以在允許的失真條件下進行。
編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術。
3、圖像增強和復原:
圖像增強和復原的目的是為了提高圖像的質量,如去除雜訊,提高圖像的清晰度等。
圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分。如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中雜訊影響。
4、圖像分割:
圖像分割是數字圖像處理中的關鍵技術之一。
圖像分割是將圖像中有意義的特徵部分提取出來,其有意義的特徵有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎。
5、圖像描述:
圖像描述是圖像識別和理解的必要前提。
一般圖像的描述方法採用二維形狀描述,它有邊界描述和區域描述兩類方法。對於特殊的紋理圖像可採用二維紋理特徵描述。
6、圖像分類:
圖像分類屬於模式識別的范疇,頃陪其主要內容是圖像經過某些預處理(增強、復原、壓縮)後,進行圖像分割和特徵提取,從而進行判決分類。
圖像分類常採用經典的模式識別方法,有統計模式分類和句法模式分類。
圖像處理主要應用在攝影及印刷、衛星圖像處理、醫學圖像處理、面孔識別、特徵識別、顯微圖像處孫乎頌理則鄭和汽車障礙識別等。
數字圖像處理技術源於20世紀20年代,當時通過海底電纜從英國倫敦到美國紐約傳輸了一幅照片,採用了數字壓縮技術。
數字圖像處理技術可以幫助人們更客觀、准確地認識世界,人的視覺系統可以幫助人類從外界獲取3/4以上的信息,而圖像、圖形又是所有視覺信息的載體,盡管人眼的鑒別力很高,可以識別上千種顏色,
但很多情況下,圖像對於人眼來說是模糊的甚至是不可見的,通過圖象增強技術,可以使模糊甚至不可見的圖像變得清晰明亮。
㈧ 圖像處理系統的分析工具
圖像處理和分析工具主要功能是進行圖像增強,便於後續的專業視覺工具進行識別和理解。常用的圖像處理和分析工具包括:直方圖工具、濾波操作、形態學操作、輪廓提前、幾何變換、顏色空間變換。從輸出關系角度,可將基本圖像預處理演算法分為:點變換演算法、領域操作演算法。
直方圖分析
直方圖分析是最基友仔轎本的圖像分析工具,直方圖可對圖像的整體灰度分布進行刻畫,主要指標包括:均值、標准差等。
濾波操作
濾波是最常用使用的圖像增強方法,主要包括:低通濾波、高通濾波、邊緣檢測、高斯濾波等。
形態學操作
形態學操作是常用的圖像增強方法:主要包括:膨脹、腐蝕、開啟、閉合、中值濾波等。
輪廓提取
輪廓是圖像的重要邊緣特徵,輪廓提取的精度、速度和穩定性是輪廓提取工具的主要評價標准。
幾何變換
常用的幾何變換包括:旋轉、平移、尺度、切變等,其統稱為仿射變換。仿射采樣也為集合變換范疇。
顏色空間轉換
圖像處理技術從圖像格式上可以分為灰度圖像處理和彩色圖像處理。在圖像處理技術發展的早期,由於受計算機處理能力的限制,圖像處理技術戚畢領域的研究主要集中在灰度圖像處理技術。隨著計算好肆機處理能力的飛速發展,彩色圖像處理技術越來越受到關注。彩色圖像處理相比灰度圖像處理存在很多優勢,其中最重要的有兩點:(1)彩色圖像所包含的信息量比灰度圖像豐富很多(2)彩色圖像更加符合人的視覺習慣。
一般情況下,相機輸出的顏色數據為RGB顏色空間數據。然而,在工業用用中,經常需要再CIE色度學空間、人類視覺空間或者OD顏色密度空間進行彩色圖像處理。顏色空間轉換即指由RGB顏色空間到CIE LAB空間、CIE LCH空間、HSI空間、HSL空間以及OD顏色密度空間轉換。
㈨ 遙感圖像分類法
利用計算機進行遙感信息的自動提取則必須使用數字圖像,由於地物在同一波段、同一地物在不同波段都具有不同的波譜特徵,通羨毀過對某種地物在各波段的波譜曲線進行分析橋派汪,根據其特點進行相應的增強處理後,可以在遙感影像上識別並提取同類目標物。早期的自動分類和圖像分割主要是基於光譜特徵,後來發展為結合光譜特徵、紋理特徵、形狀特徵、空間關系特徵等綜合因素的計算機信息提取。
常用的信息提取方法是遙感影像計算機自動分類。首先,對遙感影像室內預判讀,然後進行野外調查,旨在建立各種類型的地物與影像特徵之間的對應關系並對室內預判結果進行驗證。工作轉入室內後,選擇訓練樣本並對其進行統計分析,用適當的分類器對遙感數據分類,對分類結果進行後處理,最後進行精度評價。遙感影像的分類一般是基於地物光譜特徵、地物形狀特徵、空間關系特徵等方面特徵,目前大多數研究還是基於地物光譜特徵。
在計算機分類之前,往往要做些預處理,如校正、增強、濾波等,以突出目標物特徵或消除同一類型目標的不同部位因照射條件不同、地形變化、掃描觀測角的不同而造成的亮度差異等。
利用遙感圖像進行分類,就是對單個像元或比較勻質的像元組給出對應其特徵的名稱,其原理是利用圖像識別技術實現對遙感圖像的自動分類。計算機用以識別和分類的主要標志是物體的光譜特性,圖像上的其它信息如大小、形狀、紋理等標志尚未充分利用。
計算機圖像分類方法,常見的有兩種,即監督分類和非監督分類。監督分類,首先要從欲分類的圖像區域中選定一些訓練樣區,在這樣訓練區中地物的類別是已知的,用它建立分類標准,然後計算機將按同樣的標准對整個圖像進行識別和分類。它是一種由已知樣本,外推未知區域類別的方法;非監督分類是一種無先驗(已知)類別標準的分類方法。對於待研究的對象和區域,沒有已知類別或訓練樣本作標准,而是利用圖像數據本身能在特徵測量空間中聚集成群的特點,先形成各個數據集,然後再核對這些數據集所代表的物體類別。
與監督分類相比,非監督分類具有下列優點:不需要對被研究的地區有事先的了解,對分類的結果與精度要求相同的條件下,在時間和成本上較為節省,但實際上,非監督分類不如監督分類的精度高,所以監督分類使用的更為廣泛。
細小地物在影像上有規律地重復出現,它反映了色調變化的頻率,紋理形式很多,包括點、斑、格、壠、柵。在這些形式的基礎上根據粗細、疏密、寬窄、長短、直斜和隱顯等條件還可再細分為更多的類型。每種類型的地物在影像上都有本身的紋理圖案,因此,可以從影像的這一特徵識別地物。紋理反映的是亮度(灰度)的空間變化情況,有三個主要標志:某種局部的序列性在比該序列更大的區域內不斷重復;序列由基本部分非隨機排列組成;各部分大致都是均勻的統一體,在紋理區域內的任何地方都有大致相同的結構尺寸。這個序列的基本部分通常稱為紋理基元。因此可以認為紋理是由基元按某種確定性的規律或統計性的規律排列組成的,前者稱為確定性紋理(如人工紋理),後者呈隨機性紋理(或自然紋理)。對紋理的描述可通過紋理的粗細度、平滑性、顆粒性、隨機性、方向性、直線性、周期性、重復性等這些定性或定量的概念特徵來表徵。
相應的眾多紋理特徵提取演算法也可歸納為兩大類,即結構法和統計法。結構法把紋理視為由基本紋理元按特定的排列規則構成的周期性重復模式,因此常採用基敏仔於傳統的Fourier頻譜分析方法以確定紋理元及其排列規律。此外結構元統計法和文法紋理分析也是常用的提取方法。結構法在提取自然景觀中不規則紋理時就遇到困難,這些紋理很難通過紋理元的重復出現來表示,而且紋理元的抽取和排列規則的表達本身就是一個極其困難的問題。在遙感影像中紋理絕大部分屬隨機性,服從統計分布,一般採用統計法紋理分析。目前用得比較多的方法包括:共生矩陣法、分形維方法、馬爾可夫隨機場方法等。共生矩陣是一比較傳統的紋理描述方法,它可從多個側面描述影像紋理特徵。
圖像分割就是指把圖像分成各具特性的區域並提取出感興趣目標的技術和過程,此處特性可以是像素的灰度、顏色、紋理等預先定義的目標可以對應單個區域,也可以對應多個區域。
圖像分割是由圖像處理到圖像分析的關鍵步驟,在圖像工程中占據重要的位置。一方面,它是目標表達的基礎,對特徵測量有重要的影響;另一方面,因為圖像分割及其基於分割的目標表達、特徵抽取和參數測量的將原始圖像轉化為更抽象更緊湊的形式,使得更高層的圖像分析和理解成為可能。
圖像分割是圖像理解的基礎,而在理論上圖像分割又依賴圖像理解,彼此是緊密關聯的。圖像分割在一般意義下是十分困難的問題,目前的圖像分割一般作為圖像的前期處理階段,是針對分割對象的技術,是與問題相關的,如最常用到的利用閾值化處理進行的圖像分割。
圖像分割有三種不同的途徑,其一是將各象素劃歸到相應物體或區域的象素聚類方法即區域法,其二是通過直接確定區域間的邊界來實現分割的邊界方法,其三是首先檢測邊緣象素再將邊緣象素連接起來構成邊界形成分割。
閾值是在分割時作為區分物體與背景象素的門限,大於或等於閾值的象素屬於物體,而其它屬於背景。這種方法對於在物體與背景之間存在明顯差別(對比)的景物分割十分有效。實際上,在任何實際應用的圖像處理系統中,都要用到閾值化技術。為了有效地分割物體與背景,人們發展了各種各樣的閾值處理技術,包括全局閾值、自適應閾值、最佳閾值等等。
當物體與背景有明顯對比度時,物體的邊界處於圖像梯度最高的點上,通過跟蹤圖像中具有最高梯度的點的方式獲得物體的邊界,可以實現圖像分割。這種方法容易受到雜訊的影響而偏離物體邊界,通常需要在跟蹤前對梯度圖像進行平滑等處理,再採用邊界搜索跟蹤演算法來實現。
為了獲得圖像的邊緣人們提出了多種邊緣檢測方法,如Sobel,Cannyedge,LoG。在邊緣圖像的基礎上,需要通過平滑、形態學等處理去除雜訊點、毛刺、空洞等不需要的部分,再通過細化、邊緣連接和跟蹤等方法獲得物體的輪廓邊界。
對於圖像中某些符合參數模型的主導特徵,如直線、圓、橢圓等,可以通過對其參數進行聚類的方法,抽取相應的特徵。
區域增長方法是根據同一物體區域內象素的相似性質來聚集象素點的方法,從初始區域(如小鄰域或甚至於每個象素)開始,將相鄰的具有同樣性質的象素或其它區域歸並到目前的區域中從而逐步增長區域,直至沒有可以歸並的點或其它小區域為止。區域內象素的相似性度量可以包括平均灰度值、紋理、顏色等信息。
區域增長方法是一種比較普遍的方法,在沒有先驗知識可以利用時,可以取得最佳的性能,可以用來分割比較復雜的圖像,如自然景物。但是,區域增長方法是一種迭代的方法,空間和時間開銷都比較大。
基於像素級別的信息提取以單個像素為單位,過於著眼於局部而忽略了附近整片圖斑的幾何結構情況,從而嚴重製約了信息提取的精度,而面向對象的遙感信息提取,綜合考慮了光譜統計特徵、形狀、大小、紋理、相鄰關系等一系列因素,因而具有更高精度的分類結果。面向對象的遙感影像分析技術進行影像的分類和信息提取的方法如下:
首先對圖像數據進行影像分割,從二維化了的圖像信息陣列中恢復出圖像所反映的景觀場景中的目標地物的空間形狀及組合方式。影像的最小單元不再是單個的像素,而是一個個對象,後續的影像分析和處理也都基於對象進行。
然後採用決策支持的模糊分類演算法,並不簡單地將每個對象簡單地分到某一類,而是給出每個對象隸屬於某一類的概率,便於用戶根據實際情況進行調整,同時,也可以按照最大概率產生確定分類結果。在建立專家決策支持系統時,建立不同尺度的分類層次,在每一層次上分別定義對象的光譜特徵、形狀特徵、紋理特徵和相鄰關系特徵。其中,光譜特徵包括均值、方差、灰度比值;形狀特徵包括面積、長度、寬度、邊界長度、長寬比、形狀因子、密度、主方向、對稱性,位置,對於線狀地物包括線長、線寬、線長寬比、曲率、曲率與長度之比等,對於面狀地物包括面積、周長、緊湊度、多邊形邊數、各邊長度的方差、各邊的平均長度、最長邊的長度;紋理特徵包括對象方差、面積、密度、對稱性、主方向的均值和方差等。通過定義多種特徵並指定不同權重,建立分類標准,然後對影像分類。分類時先在大尺度上分出"父類",再根據實際需要對感興趣的地物在小尺度上定義特徵,分出"子類"。