導航:首頁 > 源碼編譯 > 交叉編譯環境用什麼軟體寫代碼

交叉編譯環境用什麼軟體寫代碼

發布時間:2023-06-02 17:09:26

㈠ 嵌入式ARM linux操作系統中如何構建交叉開發環境

這個問題相當專業了,之前我去周立功那邊了解過的。

按照以下步驟進行安裝:

1) 安裝32位的兼容庫和libncurses5-dev庫

在安裝交叉編譯工具之前需要先安裝32位的兼容庫和libncurses5-dev庫,安裝32兼容庫需要從ubuntu的源庫中下載,所以需要在Linux主機系統聯網的條件下,通過終端使用如下命令安裝:

vmuser@Linux-host ~$sudo apt-get install ia32-libs

若Linux主機系統沒有安裝32位兼容庫,在使用交叉編譯工具的時候可能會出現錯誤:

-bash: ./arm-fsl-linux-gnueabi-gcc: 沒有那個文件或目錄

在終端中使用如下命令則可以安裝libncurses5-dev庫。

vmuser@Linux-host ~$sudo apt-get install libncurses5-dev

如果沒有安裝此庫,在使用make menucofig時出現如下所示的錯誤:

*** Unableto find the ncurses libraries or the

*** required headerfiles.

*** 'makemenuconfig' requires the ncurses libraries.

***

Installncurses (ncurses-devel) and try again.

***

make[1]: *** [scripts/kconfig/dochecklxdialog] 錯誤 1

make: *** [menuconfig] 錯誤 2

2) 安裝交叉編譯工具鏈

將交叉編譯工具「gcc-4.4.4-glibc-2.11.1-multilib-1.0_EasyARM-iMX283.tar.bz2」文件通過U盤的方式拷貝到Linux主機的「/tmp」目錄下,然後執行如下命令進行解壓安裝交叉編譯工具鏈:

vmuser@Linux-host ~$ cd /tmp

vmuser@Linux-host ~$ sudo tar -jxvfgcc-4.4.4-glibc-2.11.1-multilib-1.0_EasyARM-iMX283.tar.bz2 -C /opt/

vmuser@Linux-host /tmp$ # 輸入vmuser用戶的密碼「vmuser」

執行完解壓命令後,交叉編譯工具鏈將被安裝到「/opt/gcc-4.4.4-glibc-2.11.1-multilib-1.0」目錄下。交叉編譯器的具體目錄是「/opt/gcc-4.4.4-glibc-2.11.1-multilib-1.0/arm-fsl-linux-gnueabi/bin」,為了方便使用,還需將該路徑添加到PATH環境變數中,其方法為:修改「/etc/profile」文件,具體操作方法如下:

在終端中輸入如下指令

vmuser@Linux-host ~$ sudo vi /etc/profile # 若提示輸入密碼,則輸入「vmuser」

用vi編輯器打開「/etc/profile」文件後,在文件末尾增加如下一行內容:

export PATH=$PATH:/opt/gcc-4.4.4-glibc-2.11.1-multilib-1.0/arm-fsl-linux-gnueabi/bin

文件修改並保存後,再在終端中輸入如下指令,更新環境變數,使設置生效。

vmuser@Linux-host ~$source /etc/profile

在終端輸入arm-fsl-linux-gnueabi-並按TAB鍵,如果能夠看到很多arm-fsl-linux-gnueabi-前綴的命令,則基本可以確定交叉編譯器安裝正確,如下圖所示。

㈡ 如何建立Linux下的ARM交叉編譯環境

這個過程如下
1. 下載源文件、補丁和建立編譯的目錄
2. 建立內核頭文件
3. 建立二進制工具(binutils)
4. 建立初始編譯器(bootstrap gcc)
5. 建立c庫(glibc)
6. 建立全套編譯器(full gcc)
下載源文件、補丁和建立編譯的目錄
1. 選定軟體版本號
選擇軟體版本號時,先看看glibc源代碼中的INSTALL文件。那裡列舉了該版本的glibc編譯時所需的binutils 和gcc的版本號。例如在 glibc-2.2.3/INSTALL 文件中推薦 gcc 用 2.95以上,binutils 用 2.10.1 以上版本。
我選的各個軟體的版本是:
linux-2.4.21+rmk2
binutils-2.10.1
gcc-2.95.3
glibc-2.2.3
glibc-linuxthreads-2.2.3
如果你選的glibc的版本號低於2.2,你還要下載一個叫glibc-crypt的文件,例如glibc-crypt-2.1.tar.gz。 Linux 內核你可以從www.kernel.org 或它的鏡像下載。
Binutils、gcc和glibc你可以從FSF的FTP站點ftp://ftp.gun.org/gnu/ 或它的鏡像去下載。在編譯glibc時,要用到 Linux 內核中的 include 目錄的內核頭文件。如果你發現有變數沒有定義而導致編譯失敗,你就改變你的內核版本號。例如我開始用linux-2.4.25+vrs2,編譯glibc-2.2.3 時報 BUS_ISA 沒定義,後來發現在 2.4.23 開始它的名字被改為 CTL_BUS_ISA。如果你沒有完全的把握保證你改的內核改完全了,就不要動內核,而是把你的 Linux 內核的版本號降低或升高,來適應 glibc。
Gcc 的版本號,推薦用 gcc-2.95 以上的。太老的版本編譯可能會出問題。Gcc-2.95.3 是一個比較穩定的版本,也是內核開發人員推薦用的一個 gcc 版本。
如果你發現無法編譯過去,有可能是你選用的軟體中有的加入了一些新的特性而其他所選軟體不支持的原因,就相應降低該軟體的版本號。例如我開始用 gcc-3.3.2,發現編譯不過,報 as、ld 等版本太老,我就把 gcc 降為 2.95.3。太新的版本大多沒經過大量的測試,建議不要選用。

2. 建立工作目錄
首先,我們建立幾個用來工作的目錄:
在你的用戶目錄,我用的是用戶liang,因此用戶目錄為 /home/liang,先建立一個項目目錄embedded。
$pwd
/home/liang
$mkdir embedded

再在這個項目目錄 embedded 下建立三個目錄 build-tools、kernel 和 tools。
build-tools-用來存放你下載的 binutils、gcc 和 glibc 的源代碼和用來編譯這些源代碼的目錄。
kernel-用來存放你的內核源代碼和內核補丁。
tools-用來存放編譯好的交叉編譯工具和庫文件。
$cd embedded
$mkdir build-tools kernel tools

執行完後目錄結構如下:
$ls embedded
build-tools kernel tools

3. 輸出和環境變數
我們輸出如下的環境變數方便我們編譯。
$export PRJROOT=/home/liang/embedded
$export TARGET=arm-linux
$export PREFIX=$PRJROOT/tools
$export TARGET_PREFIX=$PREFIX/$TARGET
$export PATH=$PREFIX/bin:$PATH

如果你不慣用環境變數的,你可以直接用絕對或相對路徑。我如果不用環境變數,一般都用絕對路徑,相對路徑有時會失敗。環境變數也可以定義在.bashrc文件中,這樣當你logout或換了控制台時,就不用老是export這些變數了。
體系結構和你的TAEGET變數的對應如下表

你可以在通過glibc下的config.sub腳本來知道,你的TARGET變數是否被支持,例如:
$./config.sub arm-linux
arm-unknown-linux-gnu

在我的環境中,config.sub 在 glibc-2.2.3/scripts 目錄下。
網上還有一些 HOWTO 可以參考,ARM 體系結構的《The GNU Toolchain for ARM Target HOWTO》,PowerPC 體系結構的《Linux for PowerPC Embedded Systems HOWTO》等。對TARGET的選取可能有幫助。
4. 建立編譯目錄
為了把源碼和編譯時生成的文件分開,一般的編譯工作不在的源碼目錄中,要另建一個目錄來專門用於編譯。用以下的命令來建立編譯你下載的binutils、gcc和glibc的源代碼的目錄。
$cd $PRJROOT/build-tools
$mkdir build-binutils build-boot-gcc build-gcc build-glibc gcc-patch

build-binutils-編譯binutils的目錄
build-boot-gcc-編譯gcc 啟動部分的目錄
build-glibc-編譯glibc的目錄
build-gcc-編譯gcc 全部的目錄
gcc-patch-放gcc的補丁的目錄
gcc-2.95.3 的補丁有 gcc-2.95.3-2.patch、gcc-2.95.3-no-fixinc.patch 和gcc-2.95.3-returntype-fix.patch,可以從 http://www.linuxfromscratch.org/ 下載到這些補丁。
再將你下載的 binutils-2.10.1、gcc-2.95.3、glibc-2.2.3 和 glibc-linuxthreads-2.2.3 的源代碼放入 build-tools 目錄中
看一下你的 build-tools 目錄,有以下內容:
$ls
binutils-2.10.1.tar.bz2 build-gcc gcc-patch
build-binutls build-glibc glibc-2.2.3.tar.gz
build-boot-gcc gcc-2.95.3.tar.gz glibc-linuxthreads-2.2.3.tar.gz

建立內核頭文件
把你從 www.kernel.org 下載的內核源代碼放入 $PRJROOT /kernel 目錄
進入你的 kernel 目錄:
$cd $PRJROOT /kernel

解開內核源代碼
$tar -xzvf linux-2.4.21.tar.gz


$tar -xjvf linux-2.4.21.tar.bz2

小於 2.4.19 的內核版本解開會生成一個 linux 目錄,沒帶版本號,就將其改名。
$mv linux linux-2.4.x

給 Linux 內核打上你的補丁
$cd linux-2.4.21
$patch -p1 < ../patch-2.4.21-rmk2

編譯內核生成頭文件
$make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig
你也可以用 config 和 xconfig 來代替 menuconfig,但這樣用可能會沒有設置某些配置文件選項和沒有生成下面編譯所需的頭文件。推薦大家用 make menuconfig,這也是內核開發人員用的最多的配置方法。配置完退出並保存,檢查一下的內核目錄中的 include/linux/version.h 和 include/linux/autoconf.h 文件是不是生成了,這是編譯 glibc 是要用到的,version.h 和 autoconf.h 文件的存在,也說明了你生成了正確的頭文件。
還要建立幾個正確的鏈接
$cd include
$ln -s asm-arm asm
$cd asm
$ln -s arch-epxa arch
$ln -s proc-armv proc

接下來為你的交叉編譯環境建立你的內核頭文件的鏈接
$mkdir -p $TARGET_PREFIX/include
$ln -s $PRJROOT/kernel/linux-2.4.21/include/linux $TARGET_PREFIX/include/linux
$in -s $PRJROOT/kernel/linux-2.4.21/include/asm-arm $TARGET_PREFIX/include/asm

也可以把 Linux 內核頭文件拷貝過來用
$mkdir -p $TARGET_PREFIX/include
$cp -r $PRJROOT/kernel/linux-2.4.21/include/linux $TARGET_PREFIX/include
$cp -r $PRJROOT/kernel/linux-2.4.21/include/asm-arm $TARGET_PREFIX/include

建立二進制工具(binutils)
binutils是一些二進制工具的集合,其中包含了我們常用到的as和ld。
首先,我們解壓我們下載的binutils源文件。
$cd $PRJROOT/build-tools
$tar -xvjf binutils-2.10.1.tar.bz2

然後進入build-binutils目錄配置和編譯binutils。
$cd build-binutils
$../binutils-2.10.1/configure --target=$TARGET --prefix=$PREFIX

--target 選項是指出我們生成的是 arm-linux 的工具,--prefix 是指出我們可執行文件安裝的位置。
會出現很多 check,最後產生 Makefile 文件。
有了 Makefile 後,我們來編譯並安裝 binutils,命令很簡單。
$make
$make install

看一下我們 $PREFIX/bin 下的生成的文件
$ls $PREFIX/bin
arm-linux-addr2line arm-linux-gasp arm-linux-objmp arm-linux-strings
arm-linux-ar arm-linux-ld arm-linux-ranlib arm-linux-strip
arm-linux-as arm-linux-nm arm-linux-readelf
arm-linux-c++filt arm-linux-obj arm-linux-size

我們來解釋一下上面生成的可執行文件都是用來干什麼的
add2line - 將你要找的地址轉成文件和行號,它要使用 debug 信息。
Ar-產生、修改和解開一個存檔文件
As-gnu 的匯編器
C++filt-C++ 和 java 中有一種重載函數,所用的重載函數最後會被編譯轉化成匯編的標號,c++filt 就是實現這種反向的轉化,根據標號得到函數名。
Gasp-gnu 匯編器預編譯器。
Ld-gnu 的連接器
Nm-列出目標文件的符號和對應的地址
Obj-將某種格式的目標文件轉化成另外格式的目標文件
Objmp-顯示目標文件的信息
Ranlib-為一個存檔文件產生一個索引,並將這個索引存入存檔文件中
Readelf-顯示 elf 格式的目標文件的信息
Size-顯示目標文件各個節的大小和目標文件的大小
Strings-列印出目標文件中可以列印的字元串,有個默認的長度,為4
Strip-剝掉目標文件的所有的符號信息

建立初始編譯器(bootstrap gcc)
首先進入 build-tools 目錄,將下載 gcc 源代碼解壓
$cd $PRJROOT/build-tools
$tar -xvzf gcc-2.95.3.tar.gz

然後進入 gcc-2.95.3 目錄給 gcc 打上補丁
$cd gcc-2.95.3
$patch -p1< ../gcc-patch/gcc-2.95.3.-2.patch
$patch -p1< ../gcc-patch/gcc-2.95.3.-no-fixinc.patch
$patch -p1< ../gcc-patch/gcc-2.95.3-returntype-fix.patch
echo timestamp > gcc/cstamp-h.in

在我們編譯並安裝 gcc 前,我們先要改一個文件 $PRJROOT/gcc/config/arm/t-linux,把
TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer -fPIC
這一行改為
TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer -fPIC -Dinhibit_libc -D__gthr_posix_h
你如果沒定義 -Dinhibit,編譯時將會報如下的錯誤
http://www.cnblogs.com/gcc-2.95.3/gcc/libgcc2.c:41: stdlib.h: No such file or directory
http://www.cnblogs.com/gcc-2.95.3/gcc/libgcc2.c:42: unistd.h: No such file or directory
make[3]: *** [libgcc2.a] Error 1
make[2]: *** [stmp-multilib-sub] Error 2
make[1]: *** [stmp-multilib] Error 1
make: *** [all-gcc] Error 2

㈢ 寫代碼的軟體有哪些

寫代碼可以用的軟體有:Webstorm、Vscode、SublimeText、HBuilder、Dreamweaver、notepad++、editplus等。

代碼就是程序員用開發工具所支持的語言寫出來的源文件,是一組由字元、符號或信號碼元以離散形式表示信息的明確的規則體系。代碼設計的原則包括唯一確定性、標准化和通用性、可擴充性與穩定性、便於識別與記憶、力求短小與格式統一以及容易修改等。源代碼是代碼的分支,某種意義上來說,源代碼相當於代碼。現代程序語言中,源代碼可以書籍或磁帶形式出現,但最為常用格式是文本文件,這種典型格式的目的是為了編譯出計算機程序。計算機源代碼最終目的是將人類可讀文本翻譯成為計算機可執行的二進制指令,這種過程叫編譯,它由通過編譯器完成。做前端開發,寫代碼的軟體是必不可少的。主流的前端開發寫代碼軟體有:WebStorm、Vscode、Sublime Text、HBuilder、Dreamweaver、notepad++、editplus等,下面我們一起來看看。
做前端開發,寫代碼的軟體是必不可少的。主流的前端開發寫代碼軟體有:WebStorm、Vscode、Sublime Text、HBuilder、Dreamweaver、notepad++、editplus等,下面我們一起來看看。
1.WebStorm【推薦】
WebStorm 是jetbrains公司旗下一款JavaScript 開發工具。目前已經被廣大中國JS開發者譽為「Web前端開發神器」、「最強大的HTML5編輯器」、「最智能的JavaScript IDE」等。與IntelliJ IDEA同源,繼承了IntelliJ IDEA強大的JS部分的功能。WebStorm的過人在於,商家不斷的更新版本。
2.Visual Studio Code(簡稱:Vscode)【推薦】
Visual Studio Code中文版是微軟推出的帶 GUI 的代碼編輯器,啟動非常快,完全可以用來代替其他文本文件編輯工具。還可以用來做開發,支持各種語言。軟體功能非常強大,界面簡潔明晰、操作方便快捷,設計得很人性化。軟體主要改進了文檔視圖,完善了對 Markdown的支持,新增PHP語法高亮。
3.Sublime Text
Sublime Text是一個代碼編輯器也是HTML和散文先進的文本編輯器。擁有著漂亮的用戶界面和非凡的功能,例如迷你地圖,多選擇,Python的插件,代碼段,等等。完全可自定義鍵綁定,菜單和工具欄。其主要功能包括:拼寫檢查,書簽,完整的Python API,Goto功能,即時項目切換,多選擇,多窗口等等。
4.HBuilder
HBuilder是DCloud推出的專為前端打造的開發工具,具有飛一樣的編碼、最全的語法庫和瀏覽器兼容數據、可以方便的製作手機APP、最保護眼睛的綠柔設計等特點。支持HTML、CSS、JS、PHP的快速開發。通過完整的語法提示和代碼輸入法、代碼塊等,大幅提升HTML、js、css的開發效率。
5.Dreamweaver
Dreamweaver是由Macromedia公司開發的一款所見即所得的網頁編輯器。所見即所得的網頁編輯器的優點有直觀性、使用方便、容易上手。它使用所見即所得的介面,亦有HTML編輯的功能。熟練掌握Dreamweaver軟體的使用,無論是設計師還是工程師,它都能有效提高你的工作效率。
6.Notepad++
Notepad++是一款Windows操作系統下的一套文本編輯器。此軟體是免費軟體,可以免費使用,自帶中文,小巧高效,支持27種編程語言,通吃C,C++ ,Java ,C#, XML, HTML, PHP,JS 等,Notepad++ 內置支持多達27種語法高亮度顯示。Notepad++除了可以用來製作一般的純文字說明文件,也十分適合編寫計算機程序代碼。
7.Editplus
Editplus是一款由韓國Sangil Kim出品的小巧但是功能非常強大的文字編輯器,擁有無限制的Undo/Redo(撤銷)、英文拼字檢查、自動換行、列數標記、搜尋取代、同時編輯多文件、全屏幕瀏覽功能。除了支持HTML, CSS, PHP, ASP, Perl, C/C++, Java, JavaScript, VBScript的代碼高亮外,還內建完整的HTML和CSS指令功能。

㈣ c語言用什麼編譯器

c語言可以用的編譯器有很多,包括MicrosoftVisualC++、MyEclipse、TurboC和gcc編譯器等。

1、MicrosoftVisualC++是微軟公司的免費C語言編程軟體,是用戶在安裝VisualC++庫時必須安裝的運行時組件,可以完美解決在系統運行一些軟體時會遇到缺少DLL的情況,使用戶可正常運行VisualC++開發的應用程序。

2、myeclipse是款優秀的JAVA開發工具,MyEclipse功能強大,運用廣泛,尤其是對各種開源產品的支持十分不錯,能夠大大提高開發人員的工作效率。

3、TurboC是一款功能快捷高效的C語言編輯器,主要是用來編寫C/C++程序,無需獨立地編輯、編譯和連接程序就能建立並運行C語言程序,軟體體積非常的小巧,並且對於電腦方面沒有特別的系統要求,功能上也十分的強大。

4、gcc編譯器是款專業的c語言編輯工具,可用於c語言、c++、java、object-C等語言程序中去,支持交叉編譯器,交叉語言設計,提供交叉編譯環境,通過在命令列下鍵入一些命令參數,讓編程更有效率。

總結
c語言可以用的編譯器有很多,包括MicrosoftVisualC++、MyEclipse、TurboC和gcc編譯器等。

㈤ 如何在Ubuntu下建立交叉編譯環境

1.安裝交叉編譯環境 sudo apt-get install gcc g++ libcc1 libg++ make gdb
2.安裝交叉編譯器 ftp://ftp.arm.linux.org.uk/pub/armlinux/toolchain/ 下載 cross -3.2.tar.bz2或者懶得去找乾脆
wget ftp://ftp.arm.linux.org.uk/pub/armlinux/toolchain/ cross -3.2.tar.bz2
解壓
sudo tar jxvf /home/zhaifang/cross -3.2.tar.bz2
sudo mv /home/zhaifang/usr/local/arm /usr/local
3.交叉編譯器加入路徑 sudo vi /etc/bash.bashrc後面加入
if [ -d /usr/local/arm ] ; then
PATH=/usr/local/arm/bin:"${PATH}"
fi
4.使環境生效 #source /etc/profile
5.檢查 echo $PATH 出現/usr/local/arm/bin說明成功了
6.測試 arm-linux-gcc -v

㈥ 如何使用交叉編譯進行開發

採用交叉編譯的主要原因在於,多數嵌入式目標系統不能提供足夠的資源供編譯過程使用,因而只好將編譯工程轉移到高性能的山早主機中進行。
linux下的交叉編譯環境重要包括以下幾個部分:
1.對目標系統的編譯器gcc
2.對目標系統的二進制工具binutils
3.目標系統的標准c庫glibc
4.目標系統的linux內核頭文件
交叉編譯環境的建立步驟
一、下載源代碼 下載包括binutils、gcc、glibc及linux內核的源代碼(需要注意的是,glibc和內核源代碼的版本必須與目標機上實際使用的版本保持一致),並設定shell變數PREFIX指定可執行程序的安裝路徑。
二、編譯binutils 首先運行configure文件,並使用--prefix=$PREFIX參數指定安裝路徑,使用--target=arm-linux參數指定目標機類型,然後執行make install。
三、配置linux內核頭文件
首先執行make mrproper進行清理工作,然後執行make config ARCH=arm(或make menuconfig/xconfig ARCH=arm)進行配置(注意,一定要在命令行中使用ARCH=arm指定cpu架構,因為預設架構為主機的cpu架構),這一步需要根據目標機的實際情況進行詳細的配置,筆者進行的實驗中目標機為HP的ipaq-hp3630 PDA,因而設置system type為SA11X0,SA11X0 Implementations中選擇Compaq iPAQ H3600/H3700。
配置完成之後,需要將內核頭文件拷貝到安裝目錄: cp -dR include/asm-arm $PREFIX/arm-linux/include/asm cp -dR include/linux $PREFIX/arm-linux/include/linux
四、第一次編譯gcc
首先運行configure文件,使用--prefix=$PREFIX參陪搭數指定安裝路徑,使用--target=arm-linux參數指定目標機類型,並使用--disable-threads、--disable-shared、--enable-languages=c參數,然後執行make install。這一步將生成一個最簡的gcc。由於編譯整個gcc是需要目標機的glibc庫的,它現在還不存在,因此需要首先生成一個最簡的gcc,它只需要具備編譯目標機glibc庫的能力即可。
五、交叉編譯glibc
這一步驟生成的代碼是針對目標機cpu的,因此它屬於一個交叉編譯過程。該過程要用到linux內核頭文件,默認路徑為$PREFIX/arm-linux/sys-linux,因而需要在$PREFIX/arm-linux中建立一個名為sys-linux的軟連接,使其內核頭文件所在的include目錄;或者,也可以在接下來要執行的configure命令中使用--with-headers參數指定linux內核頭文件的實際路徑。
configure的運蘆唯拿行參數設置如下(因為是交叉編譯,所以要將編譯器變數CC設為arm-linux-gcc): CC=arm-linux-gcc ./configure --prefix=$PREFIX/arm-linux --host=arm-linux --enable-add-ons 最後,按以上配置執行configure和make install,glibc的交叉編譯過程就算完成了,這里需要指出的是,glibc的安裝路徑設置為$PREFIXARCH=arm/arm-linux,如果此處設置不當,第二次編譯gcc時可能找不到glibc的頭文件和庫。
六、第二次編譯gcc
運行configure,參數設置為--prefix=$PREFIX --target=arm-linux --enable-languages=c,c++。
運行make install。
到此為止整個交叉編譯環境就完全生成了。
幾點注意事項
第一點、在第一次編譯gcc的時候可能會出現找不到stdio.h的錯誤,解決辦法是修改gcc/config/arm/t-linux文件,在TARGET_LIBGCC2_CFLAGS變數的設定中增加-Dinhibit_libc和-D__gthr_posix_h。

㈦ 如何使用clang+llvm+binutils+newlib+gdb搭建交叉編譯環境

1,Build llvm/clang/lldb/lld 3.5.0等組件

1.0 准備:

至少需要敏嘩仔從llvm.org下載llvm, cfe, lldb, compiler-rt,lld等3.5.0版本的代碼。

$tar xf llvm-3.5.0.src.tar.gz

$cd llvm-3.5.0.src

$mkdir -p tools/clang
$mkdir -p tools/clang/tools/extra
$mkdir -p tools/lld
$mkdir -p projects/compiler-rt

$tar xf cfe-3.5.0.src.tar.xz -C tools/clang --strip-components=1
$tar xf compiler-rt-3.5.0.src.tar.xz -C projects/compiler-rt --strip-components=1
$tar xf lldb-3.5.0.src.tar.xz -C tools/clang/tools/extra --strip-components=1
$tar xf lld-3.5.0.src.tar.xz -C tools/lld --strip-components=1
1.1 【可選】使用clang --stdlib=libc++時,自動添加-lc++abi。

libc++組件可以使用gcc libstdc++的supc++ ABI,也可以使用c++abi,cxxrt等,實際上自動添加-lc++abi是不必要的,這里這么處理,蘆仿主要是為了方便起見。實際上完全可以在「clang++ -stdlib=libc++」時再手工添加-lc++abi給鏈接器。

這里涉及到鏈接時DSO隱式還是顯式的問題,早些時候ld在鏈接庫時會自動引入由庫引入的依賴動態庫,後來因為這個行為的不可控性,所以ld鏈接器的行為做了修改,需要顯式橋汪的寫明所有需要鏈接的動態庫,才會有手工添加-lc++abi這種情況出現。

--- llvm-3.0.src/tools/clang/lib/Driver/ToolChain.cpp 2012-03-26 18:49:06.663029075 +0800
+++ llvm-3.0.srcn/tools/clang/lib/Driver/ToolChain.cpp 2012-03-26 19:36:04.260071355 +0800
@@ -251,6 +251,7 @@
switch (Type) {
case ToolChain::CST_Libcxx:
CmdArgs.push_back("-lc++");
+ CmdArgs.push_back("-lc++abi");
break;

case ToolChain::CST_Libstdcxx:
1.2 【必要】給clang++添加-fnolibgcc開關。

這個開關主要用來控制是否連接到libgcc或者libunwind。

註:libgcc不等於libunwind。libgcc_eh以及supc++的一部分跟libunwind功能相當。

註:libgcc_s和compiler_rt的一部分相當。

這個補丁是必要的, 不會對clang的正常使用造成任何影響 ,只有在使用「-fnolibgcc"參數時才會起作用。

之所以進行了很多unwind的引入,主要是為了避免不必要的符號缺失麻煩,這里的處理相對來說是干凈的,通過as-needed規避了不必要的引入。

--- llvm-static-3.5.0.bak/tools/clang/lib/Driver/Tools.cpp 2014-09-10 13:46:02.581543888 +0800
+++ llvm-static-3.5.0/tools/clang/lib/Driver/Tools.cpp 2014-09-10 16:03:37.559019321 +0800
@@ -2060,9 +2060,15 @@
".a");

CmdArgs.push_back(Args.MakeArgString(LibClangRT));
- CmdArgs.push_back("-lgcc_s");
- if (TC.getDriver().CCCIsCXX())
- CmdArgs.push_back("-lgcc_eh");
+ if (Args.hasArg(options::OPT_fnolibgcc)) {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lunwind");
+ CmdArgs.push_back("--no-as-needed");
+ } else {
+ CmdArgs.push_back("-lgcc_s");
+ if (TC.getDriver().CCCIsCXX())
+ CmdArgs.push_back("-lgcc_eh");
+ }
}

static void addProfileRT(
@@ -7150,24 +7156,50 @@
bool isAndroid = Triple.getEnvironment() == llvm::Triple::Android;
bool StaticLibgcc = Args.hasArg(options::OPT_static_libgcc) ||
Args.hasArg(options::OPT_static);
+
+
+
if (!D.CCCIsCXX())
- CmdArgs.push_back("-lgcc");
+ if (Args.hasArg(options::OPT_fnolibgcc)) {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lunwind");
+ CmdArgs.push_back("--no-as-needed");
+ } else
+ CmdArgs.push_back("-lgcc");

if (StaticLibgcc || isAndroid) {
if (D.CCCIsCXX())
- CmdArgs.push_back("-lgcc");
+ if (Args.hasArg(options::OPT_fnolibgcc)) {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lunwind");
+ CmdArgs.push_back("--no-as-needed");
+ } else
+ CmdArgs.push_back("-lgcc");
} else {
if (!D.CCCIsCXX())
CmdArgs.push_back("--as-needed");
- CmdArgs.push_back("-lgcc_s");
+ if (Args.hasArg(options::OPT_fnolibgcc))
+ CmdArgs.push_back("-lunwind");
+ else
+ CmdArgs.push_back("-lgcc_s");
if (!D.CCCIsCXX())
CmdArgs.push_back("--no-as-needed");
}

if (StaticLibgcc && !isAndroid)
- CmdArgs.push_back("-lgcc_eh");
+ if (Args.hasArg(options::OPT_fnolibgcc)) {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lunwind");
+ CmdArgs.push_back("--no-as-needed");
+ } else
+ CmdArgs.push_back("-lgcc_eh");
else if (!Args.hasArg(options::OPT_shared) && D.CCCIsCXX())
- CmdArgs.push_back("-lgcc");
+ if (Args.hasArg(options::OPT_fnolibgcc)) {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lunwind");
+ CmdArgs.push_back("--no-as-needed");
+ } else
+ CmdArgs.push_back("-lgcc");

// According to Android ABI, we have to link with libdl if we are
// linking with non-static libgcc.
--- llvm-static-3.5.0.bak/tools/clang/include/clang/Driver/Options.td 2014-08-07 12:51:51.000000000 +0800
+++ llvm-static-3.5.0/tools/clang/include/clang/Driver/Options.td 2014-09-10 13:36:34.598511176 +0800
@@ -788,6 +788,7 @@
def fomit_frame_pointer : Flag<["-"], "fomit-frame-pointer">, Group<f_Group>;
def fopenmp : Flag<["-"], "fopenmp">, Group<f_Group>, Flags<[CC1Option, NoArgumentUnused]>;
def fopenmp_EQ : Joined<["-"], "fopenmp=">, Group<f_Group>, Flags<[CC1Option]>;
+def fnolibgcc : Flag<["-"], "fnolibgcc">, Group<f_Group>, Flags<[CC1Option, NoArgumentUnused]>;
def fno_optimize_sibling_calls : Flag<["-"], "fno-optimize-sibling-calls">, Group<f_Group>;
def foptimize_sibling_calls : Flag<["-"], "foptimize-sibling-calls">, Group<f_Group>;
def force__cpusubtype__ALL : Flag<["-"], "force_cpusubtype_ALL">;
1.3 llvm的其他補丁。

llvm/clang將gcc toolchain的路徑hard code在代碼中,請查閱tools/clang/lib/Driver/ToolChains.cpp。

找到x86_64-redhat-linux之類的字元串。

如果沒有你系統特有的gcc tripple string,請自行添加。

這個tripple string主要是給llvm/clang搜索gcc頭文件等使用的,不影響本文要構建的toolchain

1.4 構建clang/llvm/lldb

本文使用ninja。順便說一下,llvm支持configure和cmake兩種構建方式。可能是因為工程太大,這兩種構建方式的工程文件都有各種缺陷(主要表現在開關選項上,比如configure有,但是cmake卻沒有等)。llvm-3.4.1就是因為cmake工程文件的錯誤而導致了3.4.2版本的發布。

綜合而言,cmake+ninja的方式是目前最快的構建方式之一,可以將構建時間縮短一半以上。

mkdir build
cd build

cmake \
-G Ninja \
-DCMAKE_INSTALL_PREFIX=/usr \
-DCMAKE_BUILD_TYPE="Release" \
-DCMAKE_CXX_FLAGS="-std=c++11" \
-DBUILD_SHARED_LIBS=OFF \
-DLLVM_ENABLE_PIC=ON \
-DLLVM_TARGETS_TO_BUILD="all" \
-DCLANG_VENDOR="MyOS" ..

ninja

ninja install
如果系統原來就有clang/clang++的可用版本,可以添加:

-DCMAKE_C_COMPILER=clang \
-DCMAKE_CXX_COMPILER=clang++ \
這樣就會使用系統的clang++來構建llvm/clang

2,測試clang/clang++。

自己找幾個簡單的c/cpp/objc等編譯測試一下即可。完整測試可以在構建時作ninja check-all

3,libunwind/libc++/libc++abi,一套不依賴libgcc, libstdc++的c++運行庫。

3.1 從https://github.com/pathscale/libunwind 獲取代碼。

libunwind有很多個實現,比如gnu的libunwind, path64的libunwind,還有libcxxabi自帶的Unwinder.

這里作下說明:

1),gnu的libunwind會有符號缺失和沖突。

2),libcxxabi自帶的Unwinder是給mac和ios用的,也就是只能在darwin體系構建。目前Linux的實現仍然不全,等linux實現完整了或許就不再需要path64的unwind實現了。

暫時建議使用pathscale的unwind實現。

mkdir -p build
cd build
cmake -G Ninja -DCMAKE_C_COMPILER=clang -DCMAKE_C_FLAGS="-m64" ..
ninja

mkdir -p /usr/lib
cp src/libunwind.so /usr/lib
cp src/libunwind.a /usr/lib
3.2 第一次構建libcxx.

必須先構建一次libcxx,以便後面構建libcxxabi。這里構建的libcxx實際上是使用gcc的libgcc/stdc++/supc++的。

打上這個補丁來禁止libgcc的引入:

diff -Nur libcxx/cmake/config-ix.cmake libcxxn/cmake/config-ix.cmake
--- libcxx/cmake/config-ix.cmake 2014-06-25 06:57:50.000000000 +0800
+++ libcxxn/cmake/config-ix.cmake 2014-06-25 09:05:24.980350544 +0800
@@ -28,5 +28,4 @@
check_library_exists(c printf "" LIBCXX_HAS_C_LIB)
check_library_exists(m ccos "" LIBCXX_HAS_M_LIB)
check_library_exists(rt clock_gettime "" LIBCXX_HAS_RT_LIB)
-check_library_exists(gcc_s __gcc_personality_v0 "" LIBCXX_HAS_GCC_S_LIB)
編譯安裝:

mkdir build
cd build
cmake \
-G Ninja \
-DCMAKE_INSTALL_PREFIX=/usr \
-DCMAKE_C_COMPILER=clang \
-DCMAKE_CXX_COMPILER=clang++ \
..
ninja
ninja install
3.3,測試第一次構建的libcxx。

使用"clang++ -stdlib=libc++ -o test test.cpp -lstdc++"編譯簡單c++代碼,檢查是否出錯。(如果前面構建clang是已經apply了c++abi的鏈接補丁,這里會出現找不到c++abi的情況,跳過即可)

使用"ldd test"查看test二進制動態庫使用情況。可以發現,test依賴於libgcc_s/libc++/libstdc++。(多少有些不爽了吧?使用了libc++居然還要依賴libstdc++?)

閱讀全文

與交叉編譯環境用什麼軟體寫代碼相關的資料

熱點內容
java偽隨機數 瀏覽:124
塗色書怎麼解壓 瀏覽:461
三角形圓邊編程 瀏覽:457
手機壓縮文件怎麼壓縮到十兆以下 瀏覽:985
雲主機雲伺服器品牌 瀏覽:343
安卓emulated文件夾如何打開 瀏覽:311
採用fifo頁面置換演算法是 瀏覽:192
如何上網代理伺服器 瀏覽:591
Hro系統源碼 瀏覽:845
寶庫源碼 瀏覽:340
路飛和熊排解壓力 瀏覽:623
php定時更新 瀏覽:355
數控5軸編程培訓一般多久 瀏覽:558
cadpdf圖層 瀏覽:248
用登號器出現伺服器未響應是什麼 瀏覽:903
java演算法是什麼 瀏覽:634
程序員cc發展方向 瀏覽:987
智慧黑板在哪裡下載app 瀏覽:311
男生穿衣搭配app哪個好 瀏覽:596
光大信用卡年費在app哪裡可以看 瀏覽:211