導航:首頁 > 源碼編譯 > 最優解演算法評價

最優解演算法評價

發布時間:2023-06-04 07:26:27

Ⅰ 如何理解演算法的特徵

演算法應該具有以下五個重要的特徵:

1,有窮性:演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;

2,確切性:演算法的每一步驟必須有確切的定義;

3,輸入項:一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;

4,輸出項:一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;

5,可行性:演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步,即每個計算步都可以在有限時間內完成(也稱之為有效性)。



(1)最優解演算法評價擴展閱讀:

對於一個給定的問題,往往可能有好幾種量度標准。初看起來,這些量度標准似乎都是可取的,但實際上,用其中的大多數量度標准作貪婪處理所得到該量度意義下的最優解並不是問題的最優解,而是次優解。因此,選擇能產生問題最優解的最優量度標準是使用貪婪演算法的核心。

一般情況下,要選出最優量度標准並不是一件容易的事,但對某問題能選擇出最優量度標准後,用貪婪演算法求解則特別有效。

若用回溯法求問題的所有解時,要回溯到根,且根結點的所有可行的子樹都要已被搜索遍才結束。 而若使用回溯法求任一個解時,只要搜索到問題的一個解就可以結束。

Ⅱ 粒子群演算法

粒子群演算法(Particle Swarm Optimization),又稱鳥群覓食演算法,是由數學家J. Kennedy和R. C. Eberhart等開發出的一種新的進化演算法。它是從隨機解開始觸發,通過迭代尋找出其中的最優解。本演算法主要是通過適應度來評價解的分數,比傳統的遺傳演算法更加的簡單,它沒有傳統遺傳演算法中的「交叉」和「變異」等操作,它主要是追隨當前搜索到的最優值來尋找到全局最優值。這種演算法實現容易,精度高,收斂快等特點被廣泛運用在各個問題中。

粒子群演算法是模擬鳥群覓食的所建立起來的一種智能演算法,一開始所有的鳥都不知道食物在哪裡,它們通過找到離食物最近的鳥的周圍,再去尋找食物,這樣不斷的追蹤,大量的鳥都堆積在食物附近這樣找到食物的幾率就大大增加了。粒子群就是這樣一種模擬鳥群覓食的過程,粒子群把鳥看成一個個粒子,它們擁有兩個屬性——位置和速度,然後根據自己的這兩個屬性共享到整個集群中,其他粒子改變飛行方向去找到最近的區域,然後整個集群都聚集在最優解附近,最後最終找到最優解。

演算法中我們需要的數據結構,我們需要一個值來存儲每個粒子搜索到的最優解,用一個值來存儲整個群體在一次迭代中搜索到的最優解,這樣我們的粒子速度和位置的更新公式如下:

其中pbest是每個粒子搜索到的最優解,gbest是整個群體在一次迭代中搜索到的最優解,v[i]是代表第i個粒子的速度,w代表慣性系數是一個超參數,rang()表示的是在0到1的隨機數。Present[i]代表第i個粒子當前的位置。我們通過上面的公式不停的迭代粒子群的狀態,最終得到全局最優解

Ⅲ 優化演算法是什麼呢

優化演算法是指對演算法的有關性能進行優化,如時間復雜度、空間復雜度、正確性、健壯性。

大數據時代到來,演算法要處理數據的數量級也越來越大以及處理問題的場景千變萬化。為了增強演算法的處理問題的能力,對演算法進行優化是必不可少的。演算法優化一般是對演算法結構和收斂性進行優化。

同一問題可用不同演算法解決,而一個演算法的質量優劣將影響到演算法乃至程序的效率。演算法分析的目的在於選擇合適演算法和改進演算法。一個演算法的評價主要從時間復雜度和空間復雜度來考慮。

遺傳演算法

遺傳演算法也是受自然科學的啟發。這類演算法的運行過程是先隨機生成一組解,稱之為種群。在優化過程中的每一步,演算法會計算整個種群的成本函數,從而得到一個有關題解的排序,在對題解排序之後,一個新的種群----稱之為下一代就被創建出來了。首先,我們將當前種群中位於最頂端的題解加入其所在的新種群中,稱之為精英選拔法。新種群中的餘下部分是由修改最優解後形成的全新解組成。

常用的有兩種修改題解的方法。其中一種稱為變異,其做法是對一個既有解進行微小的、簡單的、隨機的改變;修改題解的另一種方法稱為交叉或配對,這種方法是選取最優解種的兩個解,然後將它們按某種方式進行組合。爾後,這一過程會一直重復進行,直到達到指定的迭代次數,或者連續經過數代後題解都沒有改善時停止。

Ⅳ Matlab神經網路原理中可以用於尋找最優解的演算法有哪些

若果對你有幫助,請點贊。
神經網路的結構(例如2輸入3隱節點1輸出)建好後,一般就要求神經網路里的權值和閾值。現在一般求解權值和閾值,都是採用梯度下降之類的搜索演算法(梯度下降法、牛頓法、列文伯格-馬跨特法、狗腿法等等),這些演算法會先初始化一個解,在這個解的基礎上,確定一個搜索方向和一個移動步長(各種法算確定方向和步長的方法不同,也就使各種演算法適用於解決不同的問題),使初始解根據這個方向和步長移動後,能使目標函數的輸出(在神經網路中就是預測誤差)下降。 然後將它更新為新的解,再繼續尋找下一步的移動方向的步長,這樣不斷的迭代下去,目標函數(神經網路中的預測誤差)也不斷下降,最終就能找到一個解,使得目標函數(預測誤差)比較小。
而在尋解過程中,步長太大,就會搜索得不仔細,可能跨過了優秀的解,而步長太小,又會使尋解過程進行得太慢。因此,步長設置適當非常重要。
學習率對原步長(在梯度下降法中就是梯度的長度)作調整,如果學習率lr = 0.1,那麼梯度下降法中每次調整的步長就是0.1*梯度,
而在matlab神經網路工具箱里的lr,代表的是初始學習率。因為matlab工具箱為了在尋解不同階段更智能的選擇合適的步長,使用的是可變學習率,它會根據上一次解的調整對目標函數帶來的效果來對學習率作調整,再根據學習率決定步長。
機制如下:
if newE2/E2 > maxE_inc %若果誤差上升大於閾值
lr = lr * lr_dec; %則降低學習率
else
if newE2 < E2 %若果誤差減少
lr = lr * lr_inc;%則增加學習率
end
詳細的可以看《神經網路之家》nnetinfo里的《[重要]寫自己的BP神經網路(traingd)》一文,裡面是matlab神經網路工具箱梯度下降法的簡化代碼

Ⅳ cplex求最優解和演算法求解,哪個更好二者有什麼區別嗎

需要根據你的問題特性,演算法求解還涉及到你用的具體演算法,可以用現在已有的演算法,也可以自己寫演算法,這些都會影響到求解的效果,不能簡單一句cplex和演算法比較哪個優劣。
而且根據規劃的不同,使用的軟體以及方法也會有差別。
cplex可以求導最優解,但大規模的話可能時間會長。

Ⅵ 幾種經典演算法回顧

今天無意中從箱子里發現了大學時學演算法的教材《演算法設計與分析》,雖然工作這么幾年沒在什麼地方用過演算法,但演算法的思想還是影響深刻的,可以在系統設計時提供一些思路。大致翻了翻,重溫了一下幾種幾種經典的演算法,做一下小結。分治法動態規劃貪心演算法回溯法分支限界法分治法1)基本思想將一個問題分解為多個規模較小的子問題,這些子問題互相獨立並與原問題解決方法相同。遞歸解這些子問題,然後將這各子問題的解合並得到原問題的解。2)適用問題的特徵該問題的規模縮小到一定的程度就可以容易地解決該問題可以分解為若干個規模較小的相同問題,即該問題具有最優子結構性質該問題所分解出的各個子問題是相互獨立的,即子問題之間不包含公共的子問題3)關鍵如何將問題分解為規模較小並且解決方法相同的問題分解的粒度4)步驟分解->遞歸求解->合並 divide-and-conquer(P) { if ( | P | <= n0) adhoc(P); //解決小規模的問題 divide P into smaller subinstances P1,P2,...,Pk;//分解問題 for (i=1,i<=k,i++) yi=divide-and-conquer(Pi); //遞歸的解各子問題 return merge(y1,...,yk); //將各子問題的解合並為原問題的解 }google的核心演算法MapRece其實就是分治法的衍生5)分治法例子:合並排序規約過程:動態規劃1)基本思想將待求解問題分解成若干個子問題,但是經分解得到的子問題往往不是互相獨立的,如果能夠保存已解決的子問題的答案,而在需要時再找出已求得的答案,就可以避免大量重復計算2)適用問題的特徵最優子結構在遞歸計算中,許多子問題被重復計算多次3)步驟找出最優解的性質,並刻劃其結構特徵。遞歸地定義最優值。以自底向上的方式計算出最優值。根據計算最優值時得到的信息,構造最優解。貪心演算法1)基本思想貪心演算法總是作出在當前看來最好的選擇。也就是說貪心演算法並不從整體最優考慮,它所作出的選擇只是在某種意義上的局部最優選擇2)適用問題的特徵貪心選擇性質,即所求問題的整體最優解可以通過一系列局部最優的選擇,即貪心選擇來達到。最優子結構性質3)步驟:不斷尋找局部最優解4)例子:找硬幣,哈夫曼編碼,單源最短路徑,最小生成樹(Prim和Kruskal) 最小生成樹圖示:回溯法1)基本思想在問題的解空間樹中,按深度優先策略,從根結點出發搜索解空間樹。演算法搜索至解空間樹的任意一點時,先判斷該結點是否包含問題的解。如果肯定不包含,則跳過對該結點為根的子樹的搜索,逐層向其祖先結點回溯;否則,進入該子樹,繼續按深度優先策略搜索2)適用問題的特徵:容易構建所解問題的解空間3)步驟定義問題的解空間 確定易於搜索的解空間結構以深度優先方式搜索解空間,並在搜索過程中用剪枝函數避免無效搜索 4)回溯法例子:N皇後問題分支限界法1)基本思想分支限界法常以廣度優先或以最小耗費(最大效益)優先的方式搜索問題的解空間樹。 在分支限界法中,每一個活結點只有一次機會成為擴展結點。活結點一旦成為擴展結點,就一次性產生其所有兒子結點。在這些兒子結點中,導致不可行解或導致非最優解的兒子結點被舍棄,其餘兒子結點被加入活結點表中。此後,從活結點表中取下一結點成為當前擴展結點,並重復上述結點擴展過程。這個過程一直持續到找到所需的解或活結點表為空時為止。2)分支限界法例子:單源最短路徑問題問題描述:在下圖所給的有向圖G中,每一邊都有一個非負邊權。

Ⅶ floyd演算法能不能保證有最優解

Floyd演算法又稱為弗洛伊德演算法,插點法,是一種用於尋找給定的加權圖中頂點間最短路徑的演算法。

演算法過程:

把圖用鄰接距陣G表示出來,如果從Vi到Vj有路可達,則G[i,j]=d,d表示該路的長度;否則G[i,j]=空值。

定義一個距陣D用來記錄所插入點的信息,D[i,j]表示從Vi到Vj需要經過的點,初始化D[i,j]=j。
把各個頂點插入圖中,比較插點後的距離與原來的距離,G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值變小,則D[i,j]=k。

在G中包含有兩點之間最短道路的信息,而在D中則包含了最短通路徑的信息。
比如,要尋找從V5到V1的路徑。根據D,假如D(5,1)=3則說明從V5到V1經過V3,路徑為{V5,V3,V1},如果D(5,3)=3,說明V5與V3直接相連,如果D(3,1)=1,說明V3與V1直接相連。

Ⅷ 遺傳演算法的最優解 在論文中如何驗證

適應度越大,解越優。

判斷是否已得到近似全局最優解的方法就是遺傳演算法的終止條件。 在最大迭代次數范圍內可以選擇下列條件之一作為終止條件:

  1. 最大適應度值和平均適應度值變化不大、趨於穩定;

  2. 2. 相鄰GAP代種群的距離小於可接受值,參考「蔣勇,李宏.改進NSGA—II終止判斷准則[J].計算機模擬.2009. Vol.26 No.2」

閱讀全文

與最優解演算法評價相關的資料

熱點內容
數控三通編程 瀏覽:298
linux多終端 瀏覽:811
法律寫作pdf 瀏覽:144
國貨哪個品牌最好app 瀏覽:951
看哪個app給錢最多 瀏覽:178
編程靠經驗嗎 瀏覽:759
c教程pdf下載地址 瀏覽:573
製作視頻哪個app有瘦臉功能 瀏覽:649
linux查看線程內存 瀏覽:509
命令行簽名apk 瀏覽:92
網頁照片旋轉源碼 瀏覽:842
QQ會員頭像源碼 瀏覽:263
內核命令行 瀏覽:324
腳本提取源碼器 瀏覽:930
smo源碼 瀏覽:877
為什麼要搭建單獨伺服器 瀏覽:480
編譯器有什麼控制 瀏覽:893
希爾伯特pdf 瀏覽:645
php數組全數字 瀏覽:647
解密塔羅牌小程序源碼 瀏覽:862