導航:首頁 > 源碼編譯 > pcm編解碼晶元幀脈沖

pcm編解碼晶元幀脈沖

發布時間:2023-06-04 09:34:08

⑴ pcm編譯碼模擬時,數據設置正確,但是仍然沒有波形是什麼原因

模塊設計錯誤(如寄存器沒有復位信號,也沒有用initial初始化)或者該模塊的輸入信號里有不定態。官方實驗結果得知,pcm編解碼模擬時,數據設置正確,但是仍然沒有波形的原因是段含滲該模塊設計錯誤(如寄存器握脊沒有復位信號,也沒有用initial初始化)或者模塊的輸入信號里有不定態。PCM編解碼老冊原理:脈沖調制就是把一個時間連續、取值連續的模擬信號變換成時間離散、取值離散的數字信號後在信道中傳輸。

⑵ pcm編解碼輸入與輸出幅度是多少

入信號的頻率為 1KHz,幅度為 2V(峰峰值),在測試點(6)可觀察到 PCM 編碼輸出的碼流.(需 要指出的是,由於我們只在一個時隙上工作,
1、實驗目的及要求

①理解PCM編解碼原理及PCM編解碼性能;

②熟悉PCM編解碼專用集成晶元的功能和使用方法及各種時鍾間的關系;

③熟悉語音數字化技術的主要指標及測量方法;

④PCM編碼原理驗證,理解帶限濾波器作用、A律編碼規則;

⑤PCM編解碼性能測量,觀測編解碼電路頻響、時延、失真、增益等。

2、實驗器材、設備及軟體

PCM編碼軟體,集成晶元TP3057,雙蹤示波器,微處理器,液晶屏。

二、實驗結果

1、定性描述PCM編解碼的特性、編碼規則,並填下表。

量化後的信號是取值離散的數字信號,下一步是將這個數字信號編碼。通常把從模擬信

號抽樣、量化,編碼變換成為二進制符號的基本過程,稱為脈沖編碼調制。

完成PCM編碼的方式有多種,最常用的是採用集成電路完成PCM編解碼,如TP3057、TP3067等,集成電路的優點是電路簡單,只需幾個外圍元件和三種時鍾即可實現,不足是無法展示編碼的中間過程,這種方法比較適合實際通信系統。另一種PCM編碼方式是用軟體來實現,這種方法能分離出PCM編碼的中間過程,如:帶限、抽樣、量化、編碼的完整過程。

在 13 折線法中,無論輸入信號是正是負,均用 8 位折疊二進制碼來表示輸入信號的抽

樣量化值。其中,用第一位表示量化值的極性,其餘七位(第二位至第八位)則表示抽樣量

化值的老冊絕對大小。具體的做法是:用第二至第四位表示段落碼,它的 8 種可能狀態來分別代

表 8 個段落的起點電平。其它四位表示段內碼,它的 16 種可能狀態來分別代表每一段落的

16 個均勻劃分的量化級。這樣處理的結果,使 8 個段落被劃分成 27=128 個量化級。段落

碼和 8 個段落之間的關系如表 2-2 所示,段內碼與 16 個量化級之間的關系見表 2-3。上述

編碼方法是把壓縮、量化和編碼嫌汪合為一體的方法

在A律13折線編碼中,正負方向共16個段落,在每一個段落內有16個均勻分布的侍者宏量化電平,因此總的量化電平數L=256。編碼位數N=8,每個樣值用8比特代碼C1~C8來表示,分為三部分。第一位C1為極性碼,用1和0分別表示信號的正、負極性。第二到第四位碼C2C3C4為段落碼,表示信號絕對值處於那個段落,3位碼可表示8個段落,代表了8個段落的起始電平值。

上述編碼方法是把非線性壓縮、均勻量化、編碼結合為一體的方法。在上述方法中,雖然各段內的16個量化級是均勻的,但因段落長度不等,故不同段落間的量化間隔是不同的。當輸入信號小時,段落小,量化級間隔小;當輸入信號大時,段落大,量化級間隔大。第一、二段最短,歸一化長度為1/128,再將它等分16段,每一小段長度為1/2048,這就是最小的量化級間隔Δ。根據13折線的定義,以最小的量化級間隔Δ為最小計量單位,可以計算出13折線A律每個量化段的電平范圍、起始電平I、段內碼對應電平、各段落內量化間隔Δi。

如量化值:-1600量化值為負值,故極性碼C1為:0;電平范圍位於1024~2048,段落碼C2C3C4為:111;量化間隔為64,段落起始電平為1024,1600-1024=576;576/64=9;段內碼C5C6C7C8為:1001。那麼量化值-1600對應的PCM編碼值為:01111001

⑶ pcm編解碼晶元幀脈沖脈寬和線路時鍾間的關系幀周期是否可變是多少

數字信號是對連續變化的模擬信號進行抽樣、量化和編碼產生的,稱為PCM(pulsecodemolation),即脈沖編碼調制。這種電的數字信號稱為數字基帶信號,由PCM電端機產生。簡單說就是模/數轉換

⑷ PCM數字通信過程是什麼

PCM(Pulse-code molation),即脈沖編碼調制。其工作原理是:
脈沖編碼調制就是把一個時間連續,取值連續的模擬信號變換成時間離散,取值離散的數字信號後在信道中傳輸。脈沖編碼調制就是對模擬信號先抽樣,再對樣值幅度量化,編碼的過程。
抽樣,就是對模擬信號進行周期性掃描,把時間上連續的信號變成時間上離散的信號,抽樣必須遵循奈奎斯特抽樣定理。該模擬信號經過抽樣後還應當包含原信號中所有信息,也就是說能無失真的恢復原模擬信號。它的抽樣速率的下限是由抽樣定理確定的。抽樣速率採用8KHZ。
量化,就是把經過抽樣得到的瞬時值將其幅度離散,即用一組規定的電平,把瞬時抽樣值用最接近的電平值來表示,通常是用二進製表示。
量化誤差:量化後的信號和抽樣信號的差值。量化誤差在接收端表現為雜訊,稱為量化雜訊。 量化級數越多誤差越小,相應的二進制碼位數越多,要求傳輸速率越高,頻帶越寬。 為使量化雜訊盡可能小而所需碼位數又不太多,通常採用非均勻量化的方法進行量化。 非均勻量化根據幅度的不同區間來確定量化間隔,幅度小的區間量化間隔取得小,幅度大的區間量化間隔取得大。
一個模擬信號經過抽樣量化後,得到已量化的脈沖幅度調制信號,它僅為有限個數值。
編碼,就是用一組二進制碼組來表示每一個有固定電平的量化值。然而,實際上量化是在編碼過程中同時完成的,故編碼過程也稱為模/數變換,可記作A/D。
話音信號先經防混疊低通濾波器,進行脈沖抽樣,變成8KHz重復頻率的抽樣信號(即離散的脈沖調幅PAM信號),然後將幅度連續的PAM信號用「四捨五入」辦法量化為有限個幅度取值的信號,再經編碼後轉換成二進制碼。對於電話,CCITT規定抽樣率為8KHz,每抽樣值編8位碼,即共有2∧8=256個量化值,因而每話路PCM編碼後的標准數碼率是64kb/s。為解決均勻量化時小信號量化誤差大,音質差的問題,在實際中採用不均勻選取量化間隔的非線性量化方法,即量化特性在小信號時分層密,量化間隔小,而在大信號時分層疏,量化間隔大。
在實際中使用的是兩種對數形式的壓縮特性:A律和U律,A律編碼主要用於30/32路一次群系統,U律編碼主要用於24路一次群系統。A律PCM用於歐洲和中國,U律PCM用於北美和日本。

⑸ PCM編譯器晶元Tp3057

1. 點到點PCM多路電話通信原理
脈沖編碼調制(PCM)技術與增量調制(ΔM)技術已經在數字通信系統中得到廣泛應用。當信道雜訊比較小時一般用PCM,否則一般用ΔM。目前速率在155MB以下的准同步數字系列(PDH)中,國際上存在A解和μ律兩種PCM編解碼標准系列,在155MB以上的同步數字系列(SDH)中,將這兩個系列統一起來,在同一個等級上兩個系列的碼速率相同。而ΔM在國際上無統一標准,但它在通信環境比較惡劣時顯示了巨大的優越性。
點到點PCM多路電話通信原理可用圖9-1表示。對於基帶通信系統,廣義信道包括傳輸媒質、收濾波器、發濾波器等。對於頻帶系統,廣義信道包括傳輸媒質、調制器、解調器、發濾波器、收濾波器等。
本實驗模塊可以傳輸兩路話音信號。採用TP3057編譯器,它包括了圖9-1中的收、發低通濾波器及PCM編解碼器。編碼器輸入信號可以是本實驗模塊內部產生的正弦信號,也可以是外部信號源的正弦信號或電話信號。本實驗模塊中不含電話機和混合電路,廣義信道是理想的,即將復接器輸出的PCM信號直接送給分接器。
2. PCM編解碼模塊原理
本模塊的原理方框圖圖9-2所示,電原理圖如圖9-3所示(見附錄),模塊內部使用+5V和-5V電壓,其中-5V電壓由-12V電源經7905變換得到。
圖9-2 PCM編解碼原理方框圖
該模塊上有以下測試點和輸入點:
• BS PCM基群時鍾信號(位同步信號)測試點
• SL0 PCM基群第0個時隙同步信號
• SLA 信號A的抽樣信號及時隙同步信號測試點
• SLB 信號B的抽樣信號及時隙同步信號測試點
• SRB 信號B解碼輸出信號測試點
• STA 輸入到編碼器A的信號測試點
• SRA 信號A解碼輸出信號測試點
• STB 輸入到編碼器B的信號測試點
• PCM PCM基群信號測試點
• PCM-A 信號A編碼結果測試點
• PCM-B 信號B編碼結果測試點
• STA-IN 外部音頻信號A輸入點
• STB-IN 外部音頻信號B輸入點
本模塊上有三個開關K5、K6和K8,K5、K6用來選擇兩個編碼器的輸入信號,開關手柄處於左邊(STA-IN、STB-IN)時選擇外部信號、處於右邊(STA-S、STB-S)時選擇模塊內部音頻正弦信號。K8用來選擇SLB信號為時隙同步信號SL1、SL2、SL5、SL7中的某一個。
圖9-2各單元與電路板上元器件之間的對應關系如下:
•晶振 U75:非門74LS04;CRY1:4096KHz晶體
•分頻器1 U78:A:U78:D:觸發器74LS74;U79:計數器74LS193
•分頻器2 U80:計數器74LS193;U78:B:U78:D:觸發器74LS74
•抽樣信號產生器 U81:單穩74LS123;U76:移位寄存器74LS164
•PCM編解碼器A U82:PCM編解碼集成電路TP3057(CD22357)
•PCM編解碼器B U83:PCM編解碼集成電路TP3057(CD22357)
•幀同步信號產生器 U77:8位數據產生器74HC151;U86:A:與門7408
•正弦信號源A U87:運放UA741
•正弦信號源B U88:運放UA741
•復接器 U85:或門74LS32
晶振、分頻器1、分頻器2及抽樣信號(時隙同步信號)產生器構成一個定時器,為兩個PCM編解碼器提供2.048MHz的時鍾信號和8KHz的時隙同步信號。在實際通信系統中,解碼器的時鍾信號(即位同步信號)及時隙同步信號(即幀同步信號)應從接收到的數據流中提取,方法如實驗五及實驗六所述。此處將同步器產生的時鍾信號及時隙同步信號直接送給解碼器。
由於時鍾頻率為2.048MHz,抽樣信號頻率為8KHz,故PCM-A及PCM-B的碼速率都是2.048MB,一幀中有32個時隙,其中1個時隙為PCM編碼數據,另外31個時隙都是空時隙。
PCM信號碼速率也是2.048MB,一幀中的32個時隙中有29個是空時隙,第0時隙為幀同步碼(×1110010)時隙,第2時隙為信號A的時隙,第1(或第5、或第7 —由開關K8控制)時隙為信號B的時隙。
本實驗產生的PCM信號類似於PCM基群信號,但第16個時隙沒有信令信號,第0時隙中的信號與PCM基群的第0時隙的信號也不完全相同。
由於兩個PCM編解碼器用同一個時鍾信號,因而可以對它們進行同步復接(即不需要進行碼速調整)。又由於兩個編碼器輸出數據處於不同時隙,故可對PCM-A和PCM-B進行線或。本模塊中用或門74LS32對PCM-A、PCM-B及幀同步信號進行復接。在解碼之前,不需要對PCM進行分接處理,解碼器的時隙同步信號實際上起到了對信號分路的作用。
3. TP3057簡介
本模塊的核心器件是A律PCM編解碼集成電路TP3057,它是CMOS工藝製造的專用大規模集成電路,片內帶有輸出輸入話路濾波器,其引腳及內部框圖如圖9-4、圖9-5所示。引腳功能如下:
圖9-4 TP3057引腳圖
(1) V一 接-5V電源。
(2) GND 接地。
(3) VFRO 接收部分濾波器模擬信號輸出端。
(4) V+ 接+5V電源。
(5) FSR 接收部分幀同信號輸入端,此信號為8KHz脈沖序列。
(6) DR 接收部分PCM碼流輸入端。
(7) BCLKR/CLKSEL 接收部分位時鍾(同步)信號輸入端,此信號將PCM碼流在FSR上升沿後逐位移入DR端。位時鍾可以為64KHz到2.048MHz的任意頻率,或者輸入邏輯「1」或「0」電平器以選擇1.536MHz、1.544MHz或2.048MHz用作同步模式的主時鍾,此時發時鍾信號BCLKX同時作為發時鍾和收時鍾。
(8) MCLKR/PDN 接收部分主時鍾信號輸入端,此信號頻率必須為1.536MHz、1.544MHz或2.048MHz。可以和MCLKX非同步,但是同步工作時可達到最佳狀態。當此端接低電平時,所有的內部定時信號都選擇MCLKX信號,當此端接高電平時,器件處於省電狀態。
(9) MCLKX 發送部分主時鍾信號輸入端,此信號頻率必須為1.536MHz、1.544MHz或2.048MHz。可以和MCLKR非同步,但是同步工作時可達到最佳狀態。
(10) BCLKX 發送部分位時鍾輸入端,此信號將PCM碼流在FSX信號上升沿後逐位移出DX端,頻率可以為64KHz到2.04MHz的任意頻率,但必須與MCLKX同步。
圖9-5 TP3057內部方框圖
(11) DX 發送部分PCM碼流三態門輸出端。
(12) FSX 發送部分幀同步信號輸入端,此信號為8KHz脈沖序列。
(13) TSX 漏極開路輸出端,在編碼時隙輸出低電平。
(14) GSX 發送部分增益調整信號輸入端。
(15) VFXi- 發送部分放大器反向輸入端。
(16) VFXi+ 發送部分放大器正向輸入端。
TP3057由發送和接收兩部分組成,其功能簡述如下。
發送部分:
包括可調增益放大器、抗混淆濾波器、低通濾波器、高通濾波器、壓縮A/D轉換器。抗混淆濾波器對采樣頻率提供30dB以上的衰減從而避免了任何片外濾波器的加入。低通濾波器是5階的、時鍾頻率為128MHz。高通濾波器是3階的、時鍾頻率為32KHz。高通濾波器的輸出信號送給階梯波產生器(采樣頻率為8KHz)。階梯波產生器、逐次逼近寄存器(S•A•R)、比較器以及符號比特提取單元等4個部分共同組成一個壓縮式A/D轉換器。S•A•R輸出的並行碼經並/串轉換後成PCM信號。參考信號源提供各種精確的基準電壓,允許編碼輸入電壓最大幅度為5VP-P。
發幀同步信號FSX為采樣信號。每個采樣脈沖都使編碼器進行兩項工作:在8比特位同步信號BCLKX的作用下,將采樣值進行8位編碼並存入逐次逼近寄存器;將前一采樣值的編碼結果通過輸出端DX輸出。在8比特位同步信號以後,DX端處於高阻狀態。
接收部分:
包括擴張D/A轉換器和低通濾波器。低通濾波器符合AT&T D3/D4標准和CCITT建議。D/A轉換器由串/並變換、D/A寄存器組成、D/A階梯波形成等部分構成。在收幀同步脈沖FSR上升沿及其之後的8個位同步脈沖BCLKR作用下,8比特PCM數據進入接收數據寄存器(即D/A寄存器),D/A階梯波單元對8比特PCM數據進行D/A變換並保持變換後的信號形成階梯波信號。此信號被送到時鍾頻率為128KHz的開關電容低通濾波器,此低通濾波器對階梯波進行平滑濾波並對孔徑失真(sinx)/x進行補嘗。
在通信工程中,主要用動態范圍和頻率特性來說明PCM編解碼器的性能。
動態范圍的定義是解碼器輸出信噪比大於25dB時允許編碼器輸入信號幅度的變化范圍。PCM編解碼器的動態范圍應大於圖9-6所示的CCITT建議框架(樣板值)。
當編碼器輸入信號幅度超過其動態范圍時,出現過載雜訊,故編碼輸入信號幅度過大時量化信噪比急劇下降。TP3057編解碼系統不過載輸入信號的最大幅度為5VP-P。
由於採用對數壓擴技術,PCM編解碼系統可以改善小信號的量化信噪比,TP3057採用A律13折線對信號進行壓擴。當信號處於某一段落時,量化雜訊不變(因在此段落內對信號進行均勻量化),因此在同一段落內量化信噪比隨信號幅度減小而下降。13折線壓擴特性曲線將正負信號各分為8段,第1段信號最小,第8段信號最大。當信號處於第一、二段時,量化雜訊不隨信號幅度變化,因此當信號太小時,量化信噪比會小於25dB,這就是動態范圍的下限。TP3057編解碼系統動態范圍內的輸入信號最小幅度約為0.025Vp-p。
常用1KHz的正弦信號作為輸入信號來測量PCM編解碼器的動態范圍。
圖9-6 PCM編解碼系統動態范圍樣板值
語音信號的抽樣信號頻率為8KHz,為了不發生頻譜混疊,常將語音信號經截止頻率為3.4KHz的低通濾波器處理後再進行A/D處理。語音信號的最低頻率一般為300Hz。TP3057編碼器的低通濾波器和高通濾波器決定了編解碼系統的頻率特性,當輸入信號頻率超過這兩個濾波器的頻率范圍時,解碼輸出信號幅度迅速下降。這就是PCM編解碼系統頻率特性的含義。
四、實驗步驟
1. 熟悉PCM編解碼單元工作原理,開關K9接通8KHz(置為1000狀態),開關K8置為SL1(或SL5、SL7),開關K5、K6分別置於STA-S、STB-S端,接通實驗箱電源。
2. 用示波器觀察STA、STB,調節電位器R19(對應STA)、R20(對應STB),使正弦信號STA、STB波形不失真(峰峰值小於5V)。
3. 用示波器觀察PCM編碼輸出信號。
示波器CH1接SL0,(調整示波器掃描周期以顯示至少兩個SL0脈沖,從而可以觀察完整的一幀信號)CH2分別接SLA、PCM-A、SLB、PCM-B以及PCM,觀察編碼後的數據所處時隙位置與時隙同步信號的關系以及PCM信號的幀結構(注意:本實驗的幀結構中有29個時隙是空時隙,SL0、SLA及SLB的脈沖寬度等於一個時隙寬度)。
開關K8分別接通SL1、SL2、SL5、SL7,觀察PCM基群幀結構的變化情況。
4. 用示波器觀察PCM解碼輸出信號
示波器的CH1接STA,CH2接SRA,觀察這兩個信號波形是否相同(有相位差)。
5. 用示波器定性觀察PCM編解碼器的動態范圍。
開關K5置於STA-IN端,將低失真低頻信號發生器輸出的1KHz正弦信號從STA-IN輸入到TP3057(U82)編碼器。示波器的CH1接STA(編碼輸入),CH2接SRA(解碼輸出)。將信號幅度分別調至大於5VP-P、等於5VP-P,觀察過載和滿載時的解碼輸出波形。再將信號幅度分別衰減10dB、20dB、30dB、40dB、45dB、50dB,觀察解碼輸出波形(當衰減45dB以上時,解碼輸出信號波形上疊加有較明顯的雜訊)。
也可以用本模塊上的正弦信號源來觀察PCM編解碼系統的過載雜訊(只要將STA-S或STB-S信號幅度調至5VP-P以上即可),但必須用專門的信號源才能較方便地觀察到動態范圍。

⑹ 敘述pcm編解碼的基本步驟 敘述pcm的優缺點 量化有沒有反變換

1敘述PCM編解碼的基本步驟    
采樣——量化——編碼 

2量化有沒有反變換?對通信有何影響?從實驗中看對波形影響有多大?
量化會導致SNR損失,是無法恢復的。實際使用的反變換都是有誤差的。  

3PCM通信中為什麼需要同步?需要哪些同步?實驗中可不可以省去同步過程?     
使PCM通信系統中發、收兩端的定時脈沖在時間上一致起來; 
需要位同步、幀同步; 不可以。  
4對PCM可有什麼改進,舉出改進方式的例子
PCM容易利用采樣中多餘度的編碼方案將使語音信號的碼率降低。 一種簡單的解決方法就是對相鄰樣本之差編碼而不是對樣本本身編碼,由於相鄰樣本之差比實際樣本幅度小,所以表示差信號需要較小的位數。這種普通方法的一種改進方案是用前面的n個樣本根據一定的規律來預測當前的樣本,然後將預測值與實際值的誤差進行量化後傳輸,在根據誤差信號,採用和發送端相同的預測方法恢復出原始信號。

閱讀全文

與pcm編解碼晶元幀脈沖相關的資料

熱點內容
微信廣告植入系統源碼 瀏覽:922
一年級語文上冊pdf 瀏覽:313
好久不見app干什麼用的 瀏覽:143
壓縮包解壓碼對方可以更改嗎 瀏覽:256
pdf電子書製作軟體 瀏覽:888
數控三通編程 瀏覽:300
linux多終端 瀏覽:811
法律寫作pdf 瀏覽:144
國貨哪個品牌最好app 瀏覽:951
看哪個app給錢最多 瀏覽:178
編程靠經驗嗎 瀏覽:759
c教程pdf下載地址 瀏覽:573
製作視頻哪個app有瘦臉功能 瀏覽:649
linux查看線程內存 瀏覽:509
命令行簽名apk 瀏覽:92
網頁照片旋轉源碼 瀏覽:842
QQ會員頭像源碼 瀏覽:263
內核命令行 瀏覽:324
腳本提取源碼器 瀏覽:930
smo源碼 瀏覽:877