⑴ 決策樹演算法總結
目錄
一、決策樹演算法思想
二、決策樹學習本質
三、總結
一、決策樹(decision tree)演算法思想:
決策樹是一種基本的分類與回歸方法。本文主要討論分類決策樹。決策樹模型呈樹形結構,在分類問題中,表示基於特徵對實例進行分類的過程。 它可以看做是if-then的條件集合,也可以認為是定義在特徵空間與類空間上的條件概率分布 。決策樹由結點和有向邊組成。結點有兩種類型:內部結點和葉結點,內部結點表示一個特徵或屬性,葉結點表示一個類。(橢圓表示內部結點,方塊表示葉結點)
決策樹與if-then規則的關系
決策樹可以看做是多個if-then規則的集合。將決策樹轉換成if-then規則的過程是:由決策樹的根結點到葉結點的每一條路徑構建一條規則;路徑上的內部結點的特徵對應著規則的條件,而葉結點的類對應著規則的結論。決策樹的路徑或其對應的if-then規則集合具有一個重要的性質:互斥且完備。這就是說,每一個實例都被一條路徑或一條規則所覆蓋,且只被一條路徑或一條規則所覆蓋。這里的覆蓋是指實例的特徵與路徑上的特徵一致或實例滿足規則的條件。
決策樹與條件概率分布的關系
決策樹還表示給定特徵條件下類的條件概率分布。這一條件概率分布定義在特徵空間的一個劃分上。將特徵空間劃分為互不相交的單元或區域,並在每個單元定義一個類的概率分布,就構成一個條件概率分布。決策樹的一條路徑對應於劃分中的一個單元。決策樹所表示的條件概率分布由各個單元給定條件下類的條件概率分布組成。
決策樹模型的優點
決策樹模型具有可讀性,分類速度快。學習時,利用訓練數據,根據損失函數最小化原則建立決策樹模型;預測時,對新的數據,利用決策樹模型進行分類 。
二、決策樹學習本質:
決策樹學習是從訓練數據集中歸納一組分類規則、與訓練數據集不相矛盾的決策樹可能有多個,也可能一個沒有。我們需要訓練一個與訓練數據矛盾較小的決策樹,同時具有很好的泛化能力。從另一個角度看 決策樹學習是訓練數據集估計條件概率模型 。基於特徵空間劃分的類的條件概率模型有無窮多個。我們選擇的條件概率模型應該是不僅對訓練數據有很好的擬合,而且對未知數據有很好的預測。 決策樹的學習使用損失函數表示這一目標,通常的損失函數是正則化的極大似然函數。決策樹的學習策略是以損失函數為目標函數的最小化。當損失函數確定後,決策樹學習問題變為損失函數意義下選擇最優決策樹的問題。這一過程通常是一個遞歸選擇最優特徵,並根據特徵對訓練數據進行分割,使得對各個子數據集有一個最好分類的過程。這一過程對應著特徵選擇、決策樹的生成、決策樹的剪枝。
特徵選擇 : 在於選擇對訓練數據具有分類能力的特徵,這樣可以提高決策樹的學習效率。
決策樹的生成 : 根據不同特徵作為根結點,劃分不同子結點構成不同的決策樹。
決策樹的選擇 :哪種特徵作為根結點的決策樹信息增益值最大,作為最終的決策樹(最佳分類特徵)。
信息熵 : 在資訊理論與概率統計中,熵是表示隨機變數不確定性的度量。設X是一個取有限個值的離散隨機變數,其概率分布為P(X= ) = ,i=1,2,3...n,則隨機變數X的熵定義為
H(X) = — ,0 <= H(X) <= 1,熵越大,隨機變數的不確定性就越大。
條件熵(Y|X) : 表示在已知隨機變數X的條件下隨機變數Y的不確定性。
信息增益 : 表示得知特徵X的信息而使得類Y的信息的不確定性減少的程度。
信息增益 = 信息熵(父結點熵 ) — 條件熵(子結點加權熵)
三、 總結 :
優點
1、可解釋性高,能處理非線性的數據,不需要做數據歸一化,對數據分布沒有偏好。
2、可用於特徵工程,特徵選擇。
3、可轉化為規則引擎。
缺點
1、啟發式生成,不是最優解。
2、容易過擬合。
3、微小的數據改變會改變整個數的形狀。
4、對類別不平衡的數據不友好。
⑵ 決策樹(Decision Tree)
決策樹(Decision Tree)是一種基本的分類與回歸方法,其模型呈樹狀結構,在分類問題中,表示基於特徵對實例進行分類的過程。本質上,決策樹模型就是一個定義在特徵空間與類空間上的條件概率分布。決策樹學習通常包括三個步驟: 特徵選擇 、 決策樹的生成 和 決策樹的修剪 。
分類決策樹模型是一種描述對實例進行分類的樹形結構,決策樹由節點(node)和有向邊(directed edge)組成。節點有兩種類型:內部節點(internal node)和葉節點(leaf node)。內部節點表示一個特徵或屬性,葉節點表示一個類。
利用決策樹進行分類,從根節點開始,對實例的某一特徵進行測試,根據測試結果將實例分配到其子節點;這時,每一個子節點對應著該特徵的一個取值。如此遞歸地對實例進行測試並分配,直至達到葉節點。最後將實例分到葉節點的類中。
決策樹是給定特徵條件下類的條件概率分布,這一條件概率分布定義在特徵區間的一個劃分(partiton)上。將特徵空間劃分為互不相交的單元(cell)或區域(region),並在每個單元定義一個類的概率分布就構成了一個條件概率分布。決策樹的一條路徑對應劃分中的一個單元,決策樹所表示的條件概率分布由各個單元給定條件下類的條件概率分布組成。假設X為表示特徵的隨機變數,Y為表示類的隨機變數,那麼這個條件概率分布可以表示成P(Y|X)。X取值於給定劃分下單元的集合,Y取值於類的集合,各葉節點(單元)上的條件概率往往偏向於某一個類,即屬於某一類的概率較大,決策樹分類時將該節點的實例分到條件概率大的那一類去。也就以為著決策樹學習的過程其實也就是由數據集估計條件概率模型的過程,這些基於特徵區間劃分的類的條件概率模型由無窮多個,在進行選擇時,不僅要考慮模型的擬合能力還要考慮其泛化能力。
為了使模型兼顧模型的擬合和泛化能力,決策樹學習使用正則化的極大似然函數來作為損失函數,以最小化損失函數為目標,尋找最優的模型。顯然從所有可能的決策樹中選取最優決策樹是NP完全問題,所以在實際中通常採用啟發式的方法,近似求解這一最優化問題: 通過遞歸的選擇最優特徵,根據該特徵對訓練數據進行劃分直到使得各個子數據集有一個最好的分類,最終生成特徵樹 。當然,這樣得到的決策樹實際上是次最優(sub-optimal)的。進一步的,由於決策樹的演算法特性,為了防止模型過擬合,需要對已生成的決策樹自下而上進行剪枝,將樹變得更簡單,提升模型的泛化能力。具體來說,就是去掉過於細分的葉節點,使其退回到父節點,甚至更高的節點,然後將父節點或更高的節點改為新的葉節點。如果數據集的特徵較多,也可以在進行決策樹學習之前,對數據集進行特徵篩選。
由於決策樹是一個條件概率分布,所以深淺不同的決策樹對應著不同復雜度的概率模型,決策樹的生成對應模型的局部選擇,決策樹的剪枝對應著模型的全局選擇。
熵(Entropy) 的概念最早起源於物理學,最初物理學家用這個概念度量一個熱力學系統的無序程度。在1948年, 克勞德·艾爾伍德·香農 將熱力學的熵,引入到 資訊理論 ,因此它又被稱為 香農熵 。在資訊理論中,熵是對不確定性的量度,在一條信息的熵越高則能傳輸越多的信息,反之,則意味著傳輸的信息越少。
如果有一枚理想的硬幣,其出現正面和反面的機會相等,則拋硬幣事件的熵等於其能夠達到的最大值。我們無法知道下一個硬幣拋擲的結果是什麼,因此每一次拋硬幣都是不可預測的。因此,使用一枚正常硬幣進行若干次拋擲,這個事件的熵是一 比特 ,因為結果不外乎兩個——正面或者反面,可以表示為 0, 1 編碼,而且兩個結果彼此之間相互獨立。若進行 n 次 獨立實驗 ,則熵為 n ,因為可以用長度為 n 的比特流表示。但是如果一枚硬幣的兩面完全相同,那個這個系列拋硬幣事件的熵等於零,因為 結果能被准確預測 。現實世界裡,我們收集到的數據的熵介於上面兩種情況之間。
另一個稍微復雜的例子是假設一個 隨機變數 X ,取三種可能值 ,概率分別為 ,那麼編碼平均比特長度是: 。其熵為 。因此<u>熵實際是對隨機變數的比特量和順次發生概率相乘再總和的</u> 數學期望 。
依據玻爾茲曼H定理,香農把隨機變數X的熵 定義為:
其中 是隨機變數X的信息量,當隨機變數取自有限樣本時,熵可以表示為:
若 ,則定義 。
同理可以定義條件熵 :
很容易看出,條件熵(conditional entropy) 就是X給定條件下Y的條件概率分布的熵對X的數學期望。當熵和條件熵中的概率有極大似然估計得到時,所對應的熵和條件熵分別稱為檢驗熵(empirical entropy)和經驗條件熵(empirical conditional entropy).
熵越大,隨機變數的不確定性就越大,從定義可以驗證:
當底數 時,熵的單位是 ;當 時,熵的單位是 ;而當 時,熵的單位是 .
如英語有26個字母,假如每個字母在文章中出現的次數平均的話,每個字母的信息量 為:
同理常用漢字2500有個,假設每個漢字在文章中出現的次數平均的話,每個漢字的信息量 為:
事實上每個字母和漢字在文章中出現的次數並不平均,少見字母和罕見漢字具有相對較高的信息量,顯然,由期望的定義,熵是整個消息系統的平均消息量。
熵可以用來表示數據集的不確定性,熵越大,則數據集的不確定性越大。因此使用 劃分前後數據集熵的差值 量度使用當前特徵對於數據集進行劃分的效果(類似於深度學習的代價函數)。對於待劃分的數據集 ,其劃分前的數據集的熵 是一定的,但是劃分之後的熵 是不定的, 越小說明使用此特徵劃分得到的子集的不確定性越小(也就是純度越高)。因此 越大,說明使用當前特徵劃分數據集 時,純度上升的更快。而我們在構建最優的決策樹的時候總希望能更快速到達純度更高的數據子集,這一點可以參考優化演算法中的梯度下降演算法,每一步沿著負梯度方法最小化損失函數的原因就是負梯度方向是函數值減小最快的方向。同理:在決策樹構建的過程中我們總是希望集合往最快到達純度更高的子集合方向發展,因此我們總是選擇使得信息增益最大的特徵來劃分當前數據集 。
顯然這種劃分方式是存在弊端的,按信息增益准則的劃分方式,當數據集的某個特徵B取值較多時,依此特徵進行劃分更容易得到純度更高的數據子集,使得 偏小,信息增益會偏大,最終導致信息增益偏向取值較多的特徵。
設 是 個數據樣本的集合,假定類別屬性具有 個不同的值: ,設 是類 中的樣本數。對於一個給定樣本,它的信息熵為:
其中, 是任意樣本屬於 的概率,一般可以用 估計。
設一個屬性A具有 個不同的值 ,利用屬性A將集合 劃分為 個子集 ,其中 包含了集合 中屬性 取 值的樣本。若選擇屬性A為測試屬性,則這些子集就是從集合 的節點生長出來的新的葉節點。設 是子集 中類別為 的樣本數,則根據屬性A劃分樣本的信息熵為:
其中 , 是子集 中類別為 的樣本的概率。最後,用屬性A劃分樣本子集 後所得的 信息增益(Gain) 為:
即,<u>屬性A的信息增益=劃分前數據的熵-按屬性A劃分後數據子集的熵</u>。 信息增益(information gain)又稱為互信息(matual information)表示得知特徵X的信息而使得類Y的信息的不確定性減少的程度 。信息增益顯然 越小, 的值越大,說明選擇測試屬性A對於分類提供的信息越多,選擇A之後對分類的不確定程度越小。
經典演算法 ID3 使用的信息增益特徵選擇准則會使得劃分更偏相遇取值更多的特徵,為了避免這種情況。ID3的提出者 J.Ross Quinlan 提出了 C4.5 ,它在ID3的基礎上將特徵選擇准則由 信息增益 改為了 信息增益率 。在信息增益的基礎之上乘上一個懲罰參數。特徵個數較多時,懲罰參數較小;特徵個數較少時,懲罰參數較大(類似於正則化)。這個懲罰參數就是 分裂信息度量 的倒數 。
不同於 ID3 和 C4.5 , CART 使用基尼不純度來作為特徵選擇准則。基尼不純度也叫基尼指數 , 表示在樣本集合中一個隨機選中的樣本被分錯的概率 則<u>基尼指數(基尼不純度)= 樣本被選中的概率 * 樣本被分錯的概率</u>。Gini指數越小表示集合中被選中的樣本被分錯的概率越小,也就是說集合的純度越高,反之,集合越不純。
樣本集合的基尼指數:
樣本集合 有m個類別, 表示第 個類別的樣本數量,則 的Gini指數為:
基於某個特徵劃分樣本集合S之後的基尼指數:
CART是一個二叉樹,也就是當使用某個特徵劃分樣本集合後,得到兩個集合:a.等於給定的特徵值的樣本集合 ;b.不等於給定特徵值的樣本集合 。實質上是對擁有多個取值的特徵的二值處理。
對於上述的每一種劃分,都可以計算出基於劃分特=某個特徵值將樣本集合劃分為兩個子集的純度:
因而對於一個具有多個取值(超過2個)的特徵,需要計算以每個取值為劃分點,對樣本集合劃分後子集的純度 ( 表示特徵 的可能取值)然後從所有的劃分可能 中找出Gini指數最小的劃分,這個劃分的劃分點,就是使用特徵 對樣本集合 進行劃分的最佳劃分點。
參考文獻 :
決策樹--信息增益,信息增益比,Geni指數的理解
【機器學習】深入理解--信息熵(Information Entropy)
統計學習方法 (李航)
為了便於理解,利用以下數據集分別使用三種方法進行分類:
在進行具體分析之前,考慮到收入是數值類型,要使用決策樹演算法,需要先對該屬性進行離散化。
在機器學習演算法中,一些分類演算法(ID3、Apriori等)要求數據是分類屬性形式,因此在處理分類問題時經常需要將一些連續屬性變換為分類屬性。一般來說,連續屬性的離散化都是通過在數據集的值域內設定若干個離散的劃分點,將值域劃分為若干區間,然後用不同的符號或整數數值代表落在每個子區間中的數據值。所以,離散化最核心的兩個問題是:如何確定分類數以及如何將連續屬性映射到這些分類值。常用的離散化方法有 等寬法 , 等頻法 以及 一維聚類法 等。
在實際使用時往往使用Pandas的 cut() 函數實現等寬離散化:
可以看到與手工計算的離散化結果相同,需要注意的是,<u> 等寬法對於離群點比較敏感,傾向於不均勻地把屬性值分布到各個區間,導致某些區間數據較多,某些區間數據很少,這顯然不利用決策模型的建立。 </u>
使用四個分位數作為邊界點,對區間進行劃分:
<u> 等頻率離散化雖然避免了等寬離散化的數據分布不均勻的問題,卻可能將相同的數據值分到不同的區間以滿足每個區間具有相同數量的屬性取值的要求。 </u>
使用一維聚類的離散化方法後得到數據集為:
在本次實例中選擇使用基於聚類的離散化方法後得到的數據集進行指標計算。為了預測客戶能否償還債務,使用A(擁有房產)、B(婚姻情況)、C(年收入)等屬性來進行數據集的劃分最終構建決策樹。
單身 :
離婚 :
已婚 :
顯然,由B屬性取值'已婚'劃分得到的子數據集屬於同一個葉節點,無法再進行分類。
接下來,對由B屬性取值'單身'劃分得到的子數據集 再進行最優特徵選擇:
1)計算數據集 總的信息熵,其中4個數據中,能否償還債務為'是'數據有3,'否'數據有1,則總的信息熵:
2)對於A(擁有房產)屬性,其屬性值有'是'和'否'兩種。其中,在A為'是'的前提下,能否償還債務為'是'的有1、'否'的有0;在A為'否'的前提下,能否償還債務為'是'的有2、為'否'的有1,則A屬性的信息熵為:
3)對於B(婚姻情況)屬性,由於已被確定,在這個數據子集信息熵為0
4)對於C(年收入)屬性,其屬性值有'中等輸入'、'低收入'兩種。在C為'中等收入'的前提下,能否償還作為為'是'的有1,為'否'的有0;在C為'低收入'的前提下,能否償還作為為'是'的有2,為'否'的有1;則C屬性的信息熵為:
5)最後分別計算兩個屬性的信息增益值:
信息增益值相同,說明以兩個屬性對數據子集進行劃分後決策樹的純度上升是相同的,此時任選其一成為葉節點即可。
同理,對數據子集 進行最優特徵選擇,發現信息熵為0:
整理得到最終的決策樹:
⑶ 決策樹演算法-原理篇
關於決策樹演算法,我打算分兩篇來講,一篇講思想原理,另一篇直接擼碼來分析演算法。本篇為原理篇。
通過閱讀這篇文章,你可以學到:
1、決策樹的本質
2、決策樹的構造過程
3、決策樹的優化方向
決策樹根據使用目的分為:分類樹和回歸樹,其本質上是一樣的。本文只講分類樹。
決策樹,根據名字來解釋就是,使用樹型結構來模擬決策。
用圖形表示就是下面這樣。
其中橢圓形代表:特徵或屬性。長方形代表:類別結果。
面對一堆數據(含有特徵和類別),決策樹就是根據這些特徵(橢圓形)來給數據歸類(長方形)
例如,信用貸款問題,我根據《神奇動物在哪裡》的劇情給銀行造了個決策樹模型,如下圖:
然而,決定是否貸款可以根據很多特徵,然麻雞銀行選擇了:(1)是否房產價值>100w;(2)是否有其他值錢的抵押物;(3)月收入>10k;(4)是否結婚;這四個特徵,來決定是否給予貸款。
先不管是否合理,但可以肯定的是,決策樹做了特徵選擇工作,即選擇出類別區分度高的特徵。
由此可見, 決策樹其實是一種特徵選擇方法。 (特徵選擇有多種,決策樹屬於嵌入型特徵選擇,以後或許會講到,先給個圖)即選擇區分度高的特徵子集。
那麼, 從特徵選擇角度來看決策樹,決策樹就是嵌入型特徵選擇技術
同時,決策樹也是機器學習中經典分類器演算法,通過決策路徑,最終能確定實例屬於哪一類別。
那麼, 從分類器角度來看決策樹,決策樹就是樹型結構的分類模型
從人工智慧知識表示法角度來看,決策樹類似於if-then的產生式表示法。
那麼, 從知識表示角度來看決策樹,決策樹就是if-then規則的集合
由上面的例子可知,麻雞銀行通過決策樹模型來決定給哪些人貸款,這樣決定貸款的流程就是固定的,而不由人的主觀情感來決定。
那麼, 從使用者角度來看決策樹,決策樹就是規范流程的方法
最後我們再來看看決策樹的本質是什麼已經不重要了。
決策樹好像是一種思想,而通過應用在分類任務中從而成就了「決策樹演算法」。
下面內容還是繼續講解用於分類的「決策樹演算法」。
前面講了決策樹是一種 特徵選擇技術 。
既然決策樹就是一種特徵選擇的方法,那麼經典決策樹演算法其實就是使用了不同的特徵選擇方案。
如:
(1)ID3:使用信息增益作為特徵選擇
(2)C4.5:使用信息增益率作為特徵選擇
(3)CART:使用GINI系數作為特徵選擇
具體選擇的方法網上一大把,在這里我提供幾個鏈接,不細講。
但,不僅僅如此。
決策樹作為嵌入型特徵選擇技術結合了特徵選擇和分類演算法,根據特徵選擇如何生成分類模型也是決策樹的一部分。
其生成過程基本如下:
根據這三個步驟,可以確定決策樹由:(1)特徵選擇;(2)生成方法;(3)剪枝,組成。
決策樹中學習演算法與特徵選擇的關系如下圖所示:
原始特徵集合T:就是包含收集到的原始數據所有的特徵,例如:麻瓜銀行收集到與是否具有償還能力的所有特徵,如:是否結婚、是否擁有100w的房產、是否擁有汽車、是否有小孩、月收入是否>10k等等。
中間的虛線框就是特徵選擇過程,例如:ID3使用信息增益、C4.5使用信息增益率、CART使用GINI系數。
其中評價指標(如:信息增益)就是對特徵的要求,特徵需要滿足這種條件(一般是某個閾值),才能被選擇,而這一選擇過程嵌入在學習演算法中,最終被選擇的特徵子集也歸到學習演算法中去。
這就是抽象的決策樹生成過程,不論哪種演算法都是將這一抽象過程的具體化。
其具體演算法我將留在下一篇文章來講解。
而決策樹的剪枝,其實用得不是很多,因為很多情況下隨機森林能解決決策樹帶來的過擬合問題,因此在這里也不講了。
決策樹的優化主要也是圍繞決策樹生成過程的三個步驟來進行優化的。
樹型結構,可想而知,演算法效率決定於樹的深度,優化這方面主要從特徵選擇方向上優化。
提高分類性能是最重要的優化目標,其主要也是特徵選擇。
面對過擬合問題,一般使用剪枝來優化,如:李國和基於決策樹生成及剪枝的數據集優化及其應用。
同時,決策樹有很多不足,如:多值偏向、計算效率低下、對數據空缺較為敏感等,這方面的優化也有很多,大部分也是特徵選擇方向,如:陳沛玲使用粗糙集進行特徵降維。
由此,決策樹的優化方向大多都是特徵選擇方向,像ID3、C4.5、CART都是基於特徵選擇進行優化。
參考文獻
統計學習方法-李航
特徵選擇方法綜述-李郅琴
決策樹分類演算法優化研究_陳沛玲
基於決策樹生成及剪枝的數據集優化及其應用-李國和
⑷ 決策樹之ID3演算法及其Python實現
決策樹之ID3演算法及其Python實現
1. 決策樹背景知識
??決策樹是數據挖掘中最重要且最常用的方法之一,主要應用於數據挖掘中的分類和預測。決策樹是知識的一種呈現方式,決策樹中從頂點到每個結點的路徑都是一條分類規則。決策樹演算法最先基於資訊理論發展起來,經過幾十年發展,目前常用的演算法有:ID3、C4.5、CART演算法等。
2. 決策樹一般構建過程
??構建決策樹是一個自頂向下的過程。樹的生長過程是一個不斷把數據進行切分細分的過程,每一次切分都會產生一個數據子集對應的節點。從包含所有數據的根節點開始,根據選取分裂屬性的屬性值把訓練集劃分成不同的數據子集,生成由每個訓練數據子集對應新的非葉子節點。對生成的非葉子節點再重復以上過程,直到滿足特定的終止條件,停止對數據子集劃分,生成數據子集對應的葉子節點,即所需類別。測試集在決策樹構建完成後檢驗其性能。如果性能不達標,我們需要對決策樹演算法進行改善,直到達到預期的性能指標。
??註:分裂屬性的選取是決策樹生產過程中的關鍵,它決定了生成的決策樹的性能、結構。分裂屬性選擇的評判標準是決策樹演算法之間的根本區別。
3. ID3演算法分裂屬性的選擇——信息增益
??屬性的選擇是決策樹演算法中的核心。是對決策樹的結構、性能起到決定性的作用。ID3演算法基於信息增益的分裂屬性選擇。基於信息增益的屬性選擇是指以信息熵的下降速度作為選擇屬性的方法。它以的資訊理論為基礎,選擇具有最高信息增益的屬性作為當前節點的分裂屬性。選擇該屬性作為分裂屬性後,使得分裂後的樣本的信息量最大,不確定性最小,即熵最小。
??信息增益的定義為變化前後熵的差值,而熵的定義為信息的期望值,因此在了解熵和信息增益之前,我們需要了解信息的定義。
??信息:分類標簽xi 在樣本集 S 中出現的頻率記為 p(xi),則 xi 的信息定義為:?log2p(xi) 。
??分裂之前樣本集的熵:E(S)=?∑Ni=1p(xi)log2p(xi),其中 N 為分類標簽的個數。
??通過屬性A分裂之後樣本集的熵:EA(S)=?∑mj=1|Sj||S|E(Sj),其中 m 代表原始樣本集通過屬性A的屬性值劃分為 m 個子樣本集,|Sj| 表示第j個子樣本集中樣本數量,|S| 表示分裂之前數據集中樣本總數量。
??通過屬性A分裂之後樣本集的信息增益:InfoGain(S,A)=E(S)?EA(S)
??註:分裂屬性的選擇標准為:分裂前後信息增益越大越好,即分裂後的熵越小越好。
4. ID3演算法
??ID3演算法是一種基於信息增益屬性選擇的決策樹學習方法。核心思想是:通過計算屬性的信息增益來選擇決策樹各級節點上的分裂屬性,使得在每一個非葉子節點進行測試時,獲得關於被測試樣本最大的類別信息。基本方法是:計算所有的屬性,選擇信息增益最大的屬性分裂產生決策樹節點,基於該屬性的不同屬性值建立各分支,再對各分支的子集遞歸調用該方法建立子節點的分支,直到所有子集僅包括同一類別或沒有可分裂的屬性為止。由此得到一棵決策樹,可用來對新樣本數據進行分類。
ID3演算法流程:
(1) 創建一個初始節點。如果該節點中的樣本都在同一類別,則演算法終止,把該節點標記為葉節點,並用該類別標記。
(2) 否則,依據演算法選取信息增益最大的屬性,該屬性作為該節點的分裂屬性。
(3) 對該分裂屬性中的每一個值,延伸相應的一個分支,並依據屬性值劃分樣本。
(4) 使用同樣的過程,自頂向下的遞歸,直到滿足下面三個條件中的一個時就停止遞歸。
??A、待分裂節點的所有樣本同屬於一類。
??B、訓練樣本集中所有樣本均完成分類。
??C、所有屬性均被作為分裂屬性執行一次。若此時,葉子結點中仍有屬於不同類別的樣本時,選取葉子結點中包含樣本最多的類別,作為該葉子結點的分類。
ID3演算法優缺點分析
優點:構建決策樹的速度比較快,演算法實現簡單,生成的規則容易理解。
缺點:在屬性選擇時,傾向於選擇那些擁有多個屬性值的屬性作為分裂屬性,而這些屬性不一定是最佳分裂屬性;不能處理屬性值連續的屬性;無修剪過程,無法對決策樹進行優化,生成的決策樹可能存在過度擬合的情況。
⑸ 決策樹演算法
決策樹演算法的演算法理論和應用場景
演算法理論:
我了解的決策樹演算法,主要有三種,最早期的ID3,再到後來的C4.5和CART這三種演算法。
這三種演算法的大致框架近似。
決策樹的學習過程
1.特徵選擇
在訓練數據中 眾多X中選擇一個特徵作為當前節點分裂的標准。如何選擇特徵有著很多不同量化評估標准,從而衍生出不同的決策樹演算法。
2.決策樹生成
根據選擇的特徵評估標准,從上至下遞歸生成子節點,直到數據集不可分或者最小節點滿足閾值,此時決策樹停止生長。
3.剪枝
決策樹極其容易過擬合,一般需要通過剪枝,縮小樹結構規模、緩解過擬合。剪枝技術有前剪枝和後剪枝兩種。
有些演算法用剪枝過程,有些沒有,如ID3。
預剪枝:對每個結點劃分前先進行估計,若當前結點的劃分不能帶來決策樹的泛化性能的提升,則停止劃分,並標記為葉結點。
後剪枝:現從訓練集生成一棵完整的決策樹,然後自底向上對非葉子結點進行考察,若該結點對應的子樹用葉結點能帶來決策樹泛化性能的提升,則將該子樹替換為葉結點。
但不管是預剪枝還是後剪枝都是用驗證集的數據進行評估。
ID3演算法是最早成型的決策樹演算法。ID3的演算法核心是在決策樹各個節點上應用信息增益准則來選擇特徵,遞歸構建決策樹。缺點是,在選擇分裂變數時容易選擇分類多的特徵,如ID值【值越多、分叉越多,子節點的不純度就越小,信息增益就越大】。
ID3之所以無法 處理缺失值、無法處理連續值、不剪紙等情況,主要是當時的重點並不是這些。
C4.5演算法與ID3近似,只是分裂標准從 信息增益 轉變成 信息增益率。可以處理連續值,含剪枝,可以處理缺失值,這里的做法多是 概率權重。
CART:1.可以處理連續值 2.可以進行缺失值處理 3.支持剪枝 4.可以分類可以回歸。
缺失值的處理是 作為一個單獨的類別進行分類。
建立CART樹
我們的演算法從根節點開始,用訓練集遞歸的建立CART樹。
1) 對於當前節點的數據集為D,如果樣本個數小於閾值或者沒有特徵,則返回決策子樹,當前節點停止遞歸。
2) 計算樣本集D的基尼系數, 如果基尼系數小於閾值 (說明已經很純了!!不需要再分了!!),則返回決策樹子樹,當前節點停止遞歸。
3) 計算當前節點現有的各個特徵的各個特徵值對數據集D的基尼系數。
4) 在計算出來的各個特徵的各個特徵值對數據集D的基尼系數中,選擇 基尼系數最小的特徵A和對應的特徵值a。根據這個最優特徵和最優特徵值,把數據集劃分成兩部分D1和D2,同時建立當前節點的左右節點,做節點的數據集D為D1,右節點的數據集D為D2。 (註:注意是二叉樹,故這里的D1和D2是有集合關系的,D2=D-D1)
5) 對左右的子節點遞歸的調用1-4步,生成決策樹。
CART採用的辦法是後剪枝法,即先生成決策樹,然後產生所有可能的剪枝後的CART樹,然後使用交叉驗證來檢驗各種剪枝的效果,選擇泛化能力最好的剪枝策略。
應用場景
比如欺詐問題中,通過決策樹演算法簡單分類,默認是CART的分類樹,默認不剪枝。然後在出圖後,自行選擇合適的葉節點進行拒絕操作。
這個不剪枝是因為欺詐問題的特殊性,欺詐問題一般而言較少,如數據的萬幾水平,即正樣本少,而整個欺詐問題需要解決的速度較快。此時只能根據業務要求,迅速針對已有的正樣本情況,在控制准確率的前提下,盡可能提高召回率。這種情況下,可以使用決策樹來簡單應用,這個可以替代原本手工選擇特徵及特徵閾值的情況。
⑹ 決策樹演算法的介紹
決策樹演算法是一種逼近離散函數值的方法。它是一種典型的分類方法,首先對數據進行處理,利用歸納演算法生成可讀的規則和決策樹,然後使用決策對新數據進行分析。本質上決策樹是通過一系列規則對數據進行分類的過程。決策樹方法最早產生於上世紀60年代,到70年代末。由J Ross Quinlan提出了ID3演算法,此演算法的目的在於減少樹的深度。但是忽略了葉子數目的研究。C4.5演算法在ID3演算法的基礎上進行了改進,對於預測變數的缺值處理、剪枝技術、派生規則等方面作了較大改進,既適合於分類問題,又適合於回歸問題。決策樹演算法構造決策樹來發現數據中蘊涵的分類規則.如何構造精度高、規模小的決策樹是決策樹演算法的核心內容。決策樹構造可以分兩步進行。第一步,決策樹的生成:由訓練樣本集生成決策樹的過程。一般情況下,訓練樣本數據集是根據實際需要有歷史的、有一定綜合程度的,用於數據分析處理的數據集。第二步,決策樹的剪技:決策樹的剪枝是對上一階段生成的決策樹進行檢驗、校正和修下的過程,主要是用新的樣本數據集(稱為測試數據集)中的數據校驗決策樹生成過程中產生的初步規則,將那些影響預衡准確性的分枝剪除。
⑺ 決策樹演算法原理是什麼
決策樹構造的輸入是一組帶有類別標記的例子,構造的結果是一棵二叉樹或多叉樹。二叉樹的 內部節點(非 葉子節點)一般表示為一個邏輯判斷,如形式為a=aj的邏輯判斷,其中a是屬性,aj是該屬性的所有取值:樹的邊是邏輯判斷的分支結果。
多叉樹(ID3)的內部結點是屬性,邊是該屬性的所有取值,有幾個 屬性值就有幾條邊。樹的葉子節點都是類別標記。
由於數據表示不當、有雜訊或者由於決策樹生成時產生重復的子樹等原因,都會造成產生的決策樹過大。
因此,簡化決策樹是一個不可缺少的環節。尋找一棵最優決策樹,主要應解決以下3個最優化問題:①生成最少數目的葉子節點;②生成的每個葉子節點的深度最小;③生成的決策樹葉子節點最少且每個葉子節點的深度最小。
決策樹演算法的優點如下:
(1)分類精度高;
(2)生成的模式簡單;
(3)對雜訊數據有很好的健壯性。
因而是目前應用最為廣泛的歸納推理演算法之一,在 數據挖掘中受到研究者的廣泛關注。
⑻ 決策樹演算法的基本思想
1)樹以代表訓練樣本的單個結點開始。
2)如果樣本都在同一個類.則該結點成為樹葉,並用該類標記。
3)否則,演算法選擇最有分類能力的屬性作為決策樹的當前結點.
4)根據當前決策結點屬性取值的不同,將訓練樣本數據集tlI分為若乾子集,每個取值形成一個分枝,有幾個取值形成幾個分枝。勻針對上一步得到的一個子集,重復進行先前步驟,遞4'I形成每個劃分樣本上的決策樹。一旦一個屬性出現在一個結點上,就不必在該結點的任何後代考慮它。
5)遞歸劃分步驟僅當下列條件之一成立時停止:
①給定結點的所有樣本屬於同一類。
②沒有剩餘屬性可以用來進一步劃分樣本.在這種情況下.使用多數表決,將給定的結點轉換成樹葉,並以樣本中元組個數最多的類別作為類別標記,同時也可以存放該結點樣本的類別分布,
③如果某一分枝tc,沒有滿足該分支中已有分類的樣本,則以樣本的多數類創建一個樹葉。