導航:首頁 > 源碼編譯 > 遺傳演算法的種類

遺傳演算法的種類

發布時間:2023-06-04 17:01:22

A. 什麼是遺傳(要詳細的資料和圖片解說)

摘要
遺傳是指經由基因的傳遞,使後代獲得親代的特徵。遺傳學是研究此一現象的學科,目前已知地球上現存的生命主要是以DNA作為遺傳物質。除了遺傳之外,決定生物特徵的因素還有環境,以及環境與遺傳的交互作用。
[編輯本段]特點
遺傳演算法是一類可用於復雜系統優化的具有魯棒性的搜索演算法,與傳統的優化演算法相比,主要有以下特點:[1]
1、 遺傳演算法以決策變數的編碼作為運算對象。傳統的優化演算法往往直接決策變數的實際植本身,而遺傳演算法處理決策變數的某種編碼形式,使得我們可以借鑒生物學中的染色體和基因的概念,可以模仿自然界生物的遺傳和進化機理,也使得我們能夠方便的應用遺傳操作運算元。
2、 遺傳演算法直接以適應度作為搜索信息,無需導數等其它輔助信息。
3、 遺傳演算法使用多個點的搜索信息,具有隱含並行性。
4、 遺傳演算法使用概率搜索技術,而非確定性規則。
[編輯本段]應用
由於遺傳演算法的整體搜索策略和優化搜索方法在計算是不依賴於梯度信息或其它輔助知識,而只需要影響搜索方向的目標函數和相應的適應度函數,所以遺傳演算法提供了一種求解復雜系統問題的通用框架,它不依賴於問題的具體領域,對問題的種類有很強的魯棒性,所以廣泛應用於許多科學,下面我們將介紹遺傳演算法的一些主要應用領域:
1、 函數優化。
函數優化是遺傳演算法的經典應用領域,也是遺傳演算法進行性能評價的常用算例,許多人構造出了各種各樣復雜形式的測試函數:連續函數和離散函數、凸函數和凹函數、低維函數和高維函數、單峰函數和多峰函數等。對於一些非線性、多模型、多目標的函數優化問題,用其它優化方法較難求解,而遺傳演算法可以方便的得到較好的結果。遺傳與生育
2、 組合優化
隨著問題規模的增大,組合優化問題的搜索空間也急劇增大,有時在目前的計算上用枚舉法很難求出最優解。對這類復雜的問題,人們已經意識到應把主要精力放在尋求滿意解上,而遺傳演算法是尋求這種滿意解的最佳工具之一。實踐證明,遺傳演算法對於組合優化中的NP問題非常有效。例如遺傳演算法已經在求解旅行商問題、 背包問題、裝箱問題、圖形劃分問題等方面得到成功的應用。
此外,GA也在生產調度問題、自動控制、機器人學、圖象處理、人工生命、遺傳編碼和機器學習等方面獲得了廣泛的運用。
[編輯本段]現狀
進入90年代,遺傳演算法迎來了興盛發展時期,無論是理論研究還是應用研究都成了十分熱門的課題。尤其是遺傳演算法的應用研究顯得格外活躍,不但它的應用領域擴大,而且利用遺傳演算法進行優化和規則學習的能力也顯著提高,同時產業應用方面的研究也在摸索之中。此外一些新的理論和方法在應用研究中亦得到了迅速的發展,這些無疑均給遺傳演算法增添了新的活力。遺傳演算法的應用研究已從初期的組合優化求解擴展到了許多更新、更工程化的應用方面。兒童孤獨症可能來自遺傳
隨著應用領域的擴展,遺傳演算法的研究出現了幾個引人注目的新動向:一是基於遺傳演算法的機器學習,這一新的研究課題把遺傳演算法從歷來離散的搜索空間的優化搜索演算法擴展到具有獨特的規則生成功能的嶄新的機器學習演算法。這一新的學習機制對於解決人工智慧中知識獲取和知識優化精煉的瓶頸難題帶來了希望。二是遺傳演算法正日益和神經網路、模糊推理以及混沌理論等其它智能計算方法相互滲透和結合,這對開拓21世紀中新的智能計算技術將具有重要的意義。三是並行處理的遺傳演算法的研究十分活躍。這一研究不僅對遺傳演算法本身的發展,而且對於新一代智能計算機體系結構的研究都是十分重要的。四是遺傳演算法和另一個稱為人工生命的嶄新研究領域正不斷滲透。所謂人工生命即是用計算機模擬自然界豐富多彩的生命現象,其中生物的自適應、進化和免疫等現象是人工生命的重要研究對象,而遺傳演算法在這方面將會發揮一定的作用,五是遺傳演算法和進化規劃(Evolution Programming,EP)以及進化策略(Evolution Strategy,ES)等進化計算理論日益結合。EP和ES幾乎是和遺傳演算法同時獨立發展起來的,同遺傳演算法一樣,它們也是模擬自然界生物進化機制的只能計算方法,即同遺傳演算法具有相同之處,也有各自的特點。目前,這三者之間的比較研究和彼此結合的探討正形成熱點。
1991年D.Whitey在他的論文中提出了基於領域交叉的交叉運算元(Adjacency based crossover),這個運算元是特別針對用序號表示基因的個體的交叉,並將其應用到了TSP問題中,通過實驗對其進行了驗證。
D.H.Ackley等提出了隨即迭代遺傳爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)採用了一種復雜的概率選舉機制,此機制中由m個「投票者」來共同決定新個體的值(m表示群體的大小)。實驗結果表明,SIGH與單點交叉、均勻交叉的神經遺傳演算法相比,所測試的六個函數中有四個表現出更好的性能,而且總體來講,SIGH比現存的許多演算法在求解速度方面更有競爭力。
H.Bersini和G.Seront將遺傳演算法與單一方法(simplex method)結合起來,形成了一種叫單一操作的多親交叉運算元(simplex crossover),該運算元在根據兩個母體以及一個額外的個體產生新個體,事實上他的交叉結果與對三個個體用選舉交叉產生的結果一致。同時,文獻還將三者交叉運算元與點交叉、均勻交叉做了比較,結果表明,三者交叉運算元比其餘兩個有更好的性能。
國內也有不少的專家和學者對遺傳演算法的交叉運算元進行改進。2002年,戴曉明等應用多種群遺傳並行進化的思想,對不同種群基於不同的遺傳策略,如變異概率,不同的變異運算元等來搜索變數空間,並利用種群間遷移運算元來進行遺傳信息交流,以解決經典遺傳演算法的收斂到局部最優值問題
2004年,趙宏立等針對簡單遺傳演算法在較大規模組合優化問題上搜索效率不高的現象,提出了一種用基因塊編碼的並行遺傳演算法(Building-block Coded Parallel GA,BCPGA)。該方法以粗粒度並行遺傳演算法為基本框架,在染色體群體中識別出可能的基因塊,然後用基因塊作為新的基因單位對染色體重新編碼,產生長度較短的染色體,在用重新編碼的染色體群體作為下一輪以相同方式演化的初始群體。
2005年,江雷等針對並行遺傳演算法求解TSP問題,探討了使用彈性策略來維持群體的多樣性,使得演算法跨過局部收斂的障礙,向全局最優解方向進化。
[編輯本段]一般演算法
遺傳演算法是模擬達爾文的遺傳選擇和自然淘汰的生物進化過程的計算模型。它的思想源於生物遺傳學和適者生存的自然規律,是具有「生存+檢測」的迭代過程的搜索演算法。遺傳演算法以一種群體中的所有個體為對象,並利用隨機化技術指導對一個被編碼的參數空間進行高效搜索。其中,選擇、交叉和變異構成了遺傳演算法的遺傳操作;參數編碼、初始群體的設定、適應度函數的設計、遺傳操作設計、控制參數設定五個要素組成了遺傳演算法的核心內容。 作為一種新的全局優化搜索演算法,遺傳演算法以其簡單通用、魯棒性強、適於並行處理以及高效、實用等顯著特點,在各個領域得到了廣泛應用,取得了良好效果,並逐漸成為重要的智能演算法之一。遺傳演算法是基於生物學的,理解或編程都不太難。下面是遺傳演算法的一般演算法:
��
[編輯本段]創建一個隨機的初始狀態
��初始種群是從解中隨機選擇出來的,將這些解比喻為染色體或基因,該種群被稱為第一代,這和符號人工智慧系統的情況不一樣,在那裡問題的初始狀態已經給定了。
��評估適應度
��對每一個解(染色體)指定一個適應度的值,根據問題求解的實際接近程度來指定(以便逼近求解問題的答案)。不要把這些「解」與問題的「答案」混為一談,可以把它理解成為要得到答案,系統可能需要利用的那些特性。
��繁殖(包括子代突變)
��帶有較高適應度值的那些染色體更可能產生後代(後代產生後也將發生突變)。後代是父母的產物,他們由來自父母的基因結合而成,這個過程被稱為「雜交」。
��下一代
��如果新的一代包含一個解,能產生一個充分接近或等於期望答案的輸出,那麼問題就已經解決了。如果情況並非如此,新的一代將重復他們父母所進行的繁衍過程,一代一代演化下去,直到達到期望的解為止。
��並行計算
��非常容易將遺傳演算法用到並行計算和群集環境中。一種方法是直接把每個節點當成一個並行的種群看待。然後有機體根據不同的繁殖方法從一個節點遷移到另一個節點。另一種方法是「農場主/勞工」體系結構,指定一個節點為「農場主」節點,負責選擇有機體和分派適應度的值,另外的節點作為「勞工」節點,負責重新組合、變異和適應度函數的評估。
[編輯本段]遺傳演算法-基本框架
1 GA的流程圖
GA的流程圖如下圖所示
2 編碼
遺傳演算法不能直接處理問題空間的參數,必須把它們轉換成遺傳空間的由基因按一定結構組成的染色體或個體。這一轉換操作就叫做編碼,也可以稱作(問題的)表示(representation)。
評估編碼策略常採用以下3個規范:
a)完備性(completeness):問題空間中的所有點(候選解)都能作為GA空間中的點(染色體)表現。
b)健全性(soundness): GA空間中的染色體能對應所有問題空間中的候選解。
c)非冗餘性(nonrendancy):染色體和候選解一一對應。
目前的幾種常用的編碼技術有二進制編碼,浮點數編碼,字元編碼,變成編碼等。
而二進值編碼是目前遺傳演算法中最常用的編碼方法。即是由二進值字元集{0, 1}產生通常的0, 1字元串來表示問題空間的候選解。它具有以下特點:
a)簡單易行;
b)符合最小字元集編碼原則;
c)便於用模式定理進行分析,因為模式定理就是以基礎的。
3 適應度函數
進化論中的適應度,是表示某一個體對環境的適應能力,也表示該個體繁殖後代的能力。遺傳演算法的適應度函數也叫評價函數,是用來判斷群體中的個體的優劣程度的指標,它是根據所求問題的目標函數來進行評估的。
遺傳演算法在搜索進化過程中一般不需要其他外部信息,僅用評估函數來評估個體或解的優劣,並作為以後遺傳操作的依據。由於遺傳演算法中,適應度函數要比較排序並在此基礎上計算選擇概率,所以適應度函數的值要取正值.由此可見,在不少場合,將目標函數映射成求最大值形式且函數值非負的適應度函數是必要的。
適應度函數的設計主要滿足以下條件:
a)單值、連續、非負、最大化;
b) 合理、一致性;
c)計算量小;
d)通用性強。
在具體應用中,適應度函數的設計要結合求解問題本身的要求而定。適應度函數設計直接影響到遺傳演算法的性能。
4 初始群體的選取
遺傳演算法中初始群體中的個體是隨機產生的。一般來講,初始群體的設定可採取如下的策略:
a)根據問題固有知識,設法把握最優解所佔空間在整個問題空間中的分布范圍,然後,在此分布范圍內設定初始群體。
b)先隨機生成一定數目的個體,然後從中挑出最好的個體加到初始群體中。這種過程不斷迭代,直到初始群體中個體數達到了預先確定的規模。
[編輯本段]遺傳演算法-遺傳操作
遺傳操作是模擬生物基因遺傳的做法。在遺傳演算法中,通過編碼組成初始群體後,遺傳操作的任務就是對群體的個體按照它們對環境適應度(適應度評估)施加一定的操作,從而實現優勝劣汰的進化過程。從優化搜索的角度而言,遺傳操作可使問題的解,一代又一代地優化,並逼進最優解。
遺傳操作包括以下三個基本遺傳運算元(genetic operator):選擇(selection);交叉(crossover);變異(mutation)。這三個遺傳運算元有如下特點:
個體遺傳運算元的操作都是在隨機擾動情況下進行的。因此,群體中個體向最優解遷移的規則是隨機的。需要強調的是,這種隨機化操作和傳統的隨機搜索方法是有區別的。遺傳操作進行的高效有向的搜索而不是如一般隨機搜索方法所進行的無向搜索。
遺傳操作的效果和上述三個遺傳運算元所取的操作概率,編碼方法,群體大小,初始群體以及適應度函數的設定密切相關。
1 選擇
從群體中選擇優勝的個體,淘汰劣質個體的操作叫選擇。選擇運算元有時又稱為再生運算元(reproction operator)。選擇的目的是把優化的個體(或解)直接遺傳到下一代或通過配對交叉產生新的個體再遺傳到下一代。選擇操作是建立在群體中個體的適應度評估基礎上的,目前常用的選擇運算元有以下幾種:適應度比例方法、隨機遍歷抽樣法、局部選擇法、局部選擇法。
其中輪盤賭選擇法 (roulette wheel selection)是最簡單也是最常用的選擇方法。在該方法中,各個個體的選擇概率和其適應度值成比例。設群體大小為n,其中個體i的適應度為,則i 被選擇的概率,為
顯然,概率反映了個體i的適應度在整個群體的個體適應度總和中所佔的比例.個體適應度越大。其被選擇的概率就越高、反之亦然。計算出群體中各個個體的選擇概率後,為了選擇交配個體,需要進行多輪選擇。每一輪產生一個[0,1]之間均勻隨機數,將該隨機數作為選擇指針來確定被選個體。個體被選後,可隨機地組成交配對,以供後面的交叉操作。
2 交叉
在自然界生物進化過程中起核心作用的是生物遺傳基因的重組(加上變異)。同樣,遺傳演算法中起核心作用的是遺傳操作的交叉運算元。所謂交叉是指把兩個父代個體的部分結構加以替換重組而生成新個體的操作。通過交叉,遺傳演算法的搜索能力得以飛躍提高。
交叉運算元根據交叉率將種群中的兩個個體隨機地交換某些基因,能夠產生新的基因組合,期望將有益基因組合在一起。根據編碼表示方法的不同,可以有以下的演算法:
a)實值重組(real valued recombination)
1)離散重組(discrete recombination);
2)中間重組(intermediate recombination);
3)線性重組(linear recombination);
4)擴展線性重組(extended linear recombination)。
b)二進制交叉(binary valued crossover)
1)單點交叉(single-point crossover);
2)多點交叉(multiple-point crossover);
3)均勻交叉(uniform crossover);
4)洗牌交叉(shuffle crossover);
5)縮小代理交叉(crossover with reced surrogate)。
最常用的交叉運算元為單點交叉(one-point crossover)。具體操作是:在個體串中隨機設定一個交叉點,實行交叉時,該點前或後的兩個個體的部分結構進行互換,並生成兩個新個體。下面給出了單點交叉的一個例子:
個體A:1 0 0 1 ↑1 1 1 → 1 0 0 1 0 0 0 新個體
個體B:0 0 1 1 ↑0 0 0 → 0 0 1 1 1 1 1 新個體
3 變異
變異運算元的基本內容是對群體中的個體串的某些基因座上的基因值作變動。依據個體編碼表示方法的不同,可以有以下的演算法:
a)實值變異;
b)二進制變異。
一般來說,變異運算元操作的基本步驟如下:
a)對群中所有個體以事先設定的編譯概率判斷是否進行變異;
b)對進行變異的個體隨機選擇變異位進行變異。
遺傳演算法導引入變異的目的有兩個:一是使遺傳演算法具有局部的隨機搜索能力。當遺傳演算法通過交叉運算元已接近最優解鄰域時,利用變異運算元的這種局部隨機搜索能力可以加速向最優解收斂。顯然,此種情況下的變異概率應取較小值,否則接近最優解的積木塊會因變異而遭到破壞。二是使遺傳演算法可維持群體多樣性,以防止出現未成熟收斂現象。此時收斂概率應取較大值。
遺傳演算法中,交叉運算元因其全局搜索能力而作為主要運算元,變異運算元因其局部搜索能力而作為輔助運算元。遺傳演算法通過交叉和變異這對相互配合又相互競爭的操作而使其具備兼顧全局和局部的均衡搜索能力。所謂相互配合.是指當群體在進化中陷於搜索空間中某個超平面而僅靠交叉不能擺脫時,通過變異操作可有助於這種擺脫。所謂相互競爭,是指當通過交叉已形成所期望的積木塊時,變異操作有可能破壞這些積木塊。如何有效地配合使用交叉和變異操作,是目前遺傳演算法的一個重要研究內容。
基本變異運算元是指對群體中的個體碼串隨機挑選一個或多個基因座並對這些基因座的基因值做變動(以變異概率P.做變動),(0,1)二值碼串中的基本變異操作如下:
基因位下方標有*號的基因發生變異。
變異率的選取一般受種群大小、染色體長度等因素的影響,通常選取很小的值,一般取0.001-0.1。
終止條件
當最優個體的適應度達到給定的閥值,或者最優個體的適應度和群體適應度不再上升時,或者迭代次數達到預設的代數時,演算法終止。預設的代數一般設置為100-500代。
[編輯本段]遺傳演算法-求解演算法的特點分析
遺傳演算法作為一種快捷、簡便、容錯性強的演算法,在各類結構對象的優化過程中顯示出明顯的優勢。與傳統的搜索方法相比,遺傳演算法具有如下特點:
a)搜索過程不直接作用在變數上,而是在參數集進行了編碼的個體。此編碼操作,使得遺傳演算法可直接對結構對象(集合、序列、矩陣、樹、圖、鏈和表)進行操作。
b)搜索過程是從一組解迭代到另一組解,採用同時處理群體中多個個體的方法,降低了陷入局部最優解的可能性,並易於並行化。
c)採用概率的變遷規則來指導搜索方向,而不採用確定性搜索規則。
d)對搜索空間沒有任何特殊要求(如連通性、凸性等),只利用適應性信息,不需要導數等其它輔助信息,適應范圍更廣。
[編輯本段]術語說明
由於遺傳演算法是由進化論和遺傳學機理而產生的搜索演算法,所以在這個演算法中會用到很多生物遺傳學知識,下面是我們將會用來的一些術語說明:
一、染色體(Chronmosome)
染色體又可以叫做基因型個體(indivials),一定數量的個體組成了群體(population),群體中個體的數量叫做群體大小。
二、基因(Gene)
基因是串中的元素,基因用於表示個體的特徵。例如有一個串S=1011,則其中的1,0,1,1這4個元素分別稱為基因。它們的值稱為等位基因(Alletes)。
三、基因地點(Locus)
基因地點在演算法中表示一個基因在串中的位置稱為基因位置(Gene Position),有時也簡稱基因位。基因位置由串的左向右計算,例如在串 S=1101 中,0的基因位置是3。
四、基因特徵值(Gene Feature)
在用串表示整數時,基因的特徵值與二進制數的權一致;例如在串 S=1011 中,基因位置3中的1,它的基因特徵值為2;基因位置1中的1,它的基因特徵值為8。
五、適應度(Fitness)
各個個體對環境的適應程度叫做適應度(fitness)。為了體現染色體的適應能力,引入了對問題中的每一個染色體都能進行度量的函數,叫適應度函數. 這個函數是計算個體在群體中被使用的概率。
[編輯本段]參考資料
1.《計算機教育》第10期 作者:王利
2.遺傳演算法——理論、應用與軟體實現 王小平、曹立明著
3.同濟大學計算機系 王小平編寫的程序代碼

參考資料
1. 中新網:英13歲少女患家族遺傳怪病 滿臉皺紋像老人,2010年01月27日

http://www.chinanews.com.cn/gj/gj-ywdd2/news/2010/01-27/2094204.shtml

B. 遺傳演算法是什麼

遺傳演算法(Genetic Algorithm)是一類借鑒生物界的進化規律(適者生存,優勝劣汰遺傳機制)演化而來的隨機化搜索方法。
遺傳演算法(Genetic Algorithms簡稱GA)是由美國Michigan大學的John Holland教授於20世紀60年代末創建的。它來源於達爾文的進化論和孟德爾、摩根的遺傳學理論,通過模擬生物進化的機制來構造人工系統。遺傳演算法作為一種全局優化方法,提供了一種求解復雜系統優化問題的通用框架,它不依賴於問題的具體領域,對優化函數的要求很低並且對不同種類的問題具有很強的魯棒性,所以廣泛應用於計算機科學、工程技術和社會科學等領域。John Holland教授通過模擬生物進化過程設計了最初的遺傳演算法,我們稱之為標准遺傳演算法。
標准遺傳演算法流程如下:
1)初始化遺傳演算法的群體,包括初始種群的產生以及對個體的編碼。
2)計算種群中每個個體的適應度,個體的適應度反映了其優劣程度。
3)通過選擇操作選出一些個體,這些個體就是母代個體,用來繁殖子代。
4)選出的母代個體兩兩配對,按照一定的交叉概率來進行交叉,產生子代個體。
5)按照一定的變異概率,對產生的子代個體進行變異操作。
6)將完成交叉、變異操作的子代個體,替代種群中某些個體,達到更新種群的目的。
7)再次計算種群的適應度,找出當前的最優個體。
8)判斷是否滿足終止條件,不滿足則返回第3)步繼續迭代,滿足則退出迭代過程,第7)步中得到的當前最優個體,通過解碼,就作為本次演算法的近似最優解。

具體你可以到網路文庫去搜索遺傳演算法相關的論文,很多的。
你也可以參考網路里對遺傳演算法的介紹。

C. 優化演算法筆記(二)優化演算法的分類

(以下描述,均不是學術用語,僅供大家快樂的閱讀)

在分類之前,我們先列舉一下常見的優化演算法(不然我們拿什麼分類呢?)。
1遺傳演算法Genetic algorithm
2粒子群優化演算法Particle Swarm Optimization
3差分進化演算法Differential Evolution
4人工蜂群演算法Artificial Bee Colony
5蟻群演算法Ant Colony Optimization
6人工魚群演算法Artificial Fish Swarm Algorithm
7杜鵑搜索演算法Cuckoo Search
8螢火蟲演算法Firefly Algorithm
9灰狼演算法Grey Wolf Optimizer
10鯨魚演算法Whale Optimization Algorithm
11群搜索演算法Group search optimizer
12混合蛙跳演算法Shuffled Frog Leaping Algorithm
13煙花演算法fireworks algorithm
14菌群優化演算法Bacterial Foraging Optimization
以上優化演算法是我所接觸過的演算法,沒接觸過的演算法不能隨便下結論,知之為知之,不知為不知。其實到目前為止優化演算法可能已經有幾百種了,我們不可能也不需要全面的了解所有的演算法,而且優化演算法之間也有較大的共性,深入研究幾個之後再看其他優化演算法上手速度會灰常的快。
優化演算法從提出到現在不過50-60年(遺傳演算法1975年提出),雖種類繁多但大多較為相似,不過這也很正常,比較香蕉和人的基因相似度也有50%-60%。當然演算法之間的相似度要比香蕉和人的相似度更大,畢竟人家都是優化演算法,有著相同的目標,只是實現方式不同。就像條條大路通羅馬,我們可以走去,可以坐汽車去,可以坐火車去,也可以坐飛機去,不管使用何種方式,我們都在去往羅馬的路上,也不會說坐飛機去要比走去更好,交通工具只是一個工具,最終的方案還是要看我們的選擇。

上面列舉了一些常見的演算法,即使你一個都沒見過也沒關系,後面會對它們進行詳細的介紹,但是對後面的分類可能會有些許影響,不過問題不大,就先當總結看了。
再對優化演算法分類之前,先介紹一下演算法的模型,在筆記(一)中繪制了優化演算法的流程,不過那是個較為簡單的模型,此處的模型會更加復雜。上面說了優化演算法有較大的相似性,這些相似性主要體現在演算法的運行流程中。
優化演算法的求解過程可以看做是一個群體的生存過程。

有一群原始人,他們要在野外中尋找食物,一個原始人是這個群體中的最小單元,他們的最終目標是尋找這個環境中最容易獲取食物的位置,即最易存活下來的位置。每個原始人都去獨自尋找食物,他們每個人每天獲取食物的策略只有採集果實、製作陷阱或者守株待兔,即在一天之中他們不會改變他們的位置。在下一天他們會根據自己的策略變更自己的位置。到了某一天他們又聚在了一起,選擇了他們到過的最容易獲取食物的位置定居。
一群原始人=優化演算法中的種群、群體;
一個原始人=優化演算法中的個體;
一個原始人的位置=優化演算法中個體的位置、基因等屬性;
原始人變更位置=優化演算法中總群的更新操作;
該位置獲取食物的難易程度=優化演算法中的適應度函數;
一天=優化演算法中的一個迭代;
這群原始人最終的定居位置=優化演算法所得的解。
優化演算法的流程圖如下:

對優化演算法分類得有個標准,按照不同的標准分類也會得到不一樣的結果。首先說一下我所使用的分類標准(動態更新,有了新的感悟再加):

按由來分類比較好理解,就是該演算法受何種現象啟發而發明,本質是對現象分類。

可以看出演算法根據由來可以大致分為有人類的理論創造而來,向生物學習而來,受物理現象啟發。其中向生物學習而來的演算法最多,其他類別由於舉例有偏差,不是很准確,而且物理現象也經過人類總結,有些與人類現象相交叉,但仍將其獨立出來。
類別分好了,那麼為什麼要這么分類呢?

當然是因為要湊字數啦,啊呸,當然是為了更好的理解學習這些演算法的原理及特點。
向動物生存學習而來的演算法一定是一種行之有效的方法,能夠保證演算法的效率和准確性,因為,如果使用該策略的動物無法存活到我們可以對其進行研究,我們也無法得知其生存策略。(而這也是一種倖存者偏差,我們只能看到行之有效的策略,但並不是我們沒看到的策略都是垃圾,畢竟也發生過小行星撞地球這種小概率毀滅性事件。講個冷笑話開cou心一shu下:一隻小恐龍對他的小夥伴說,好開心,我最喜歡的那顆星星越來越亮了(完)。)但是由於生物的局限性,人們所創造出的演算法也會有局限性:我們所熟知的生物都生存在三維空間,在這些環境中,影響生物生存的條件比較有限,反應到演算法中就是這些演算法在解決較低維度的問題時效果很好,當遇到超高維(維度>500)問題時,結果可能不容樂觀,沒做過實驗,我也不敢亂說。

按更新過程分類相對復雜一點,主要是根據優化演算法流程中更新位置操作的方式來進行分類。更新位置的操作按我的理解可大致分為兩類:1.跟隨最優解;2.不跟隨最優解。
還是上面原始人的例子,每天他有一次去往其他位置狩獵的機會,他們採用何種方式來決定今天自己應該去哪裡呢?
如果他們的策略是「跟隨最優解」,那麼他們選取位置的方式就是按一定的策略向群體已知的最佳狩獵位置(歷史最佳)或者是當前群體中的最佳狩獵位置(今天最佳)靠近,至於是直線跑過去還是蛇皮走位繞過去,這個要看他們群體的策略。當然,他們的目的不是在最佳狩獵位置集合,他們的目的是在過去的途中看是否能發現更加好的狩獵位置,去往已經到過的狩獵地點再次狩獵是沒有意義的,因為每個位置獲取食物的難易程度是固定的。有了目標,大家都會朝著目標前進,總有一日,大家會在謀個位置附近相聚,相聚雖好但不利於後續的覓食容易陷入局部最優。
什麼是局部最優呢?假設在當前環境中有一「桃花源」,擁有上帝視角的我們知道這個地方就是最適合原始人們生存的,但是此地入口隱蔽「山有小口,彷彿若有光」、「初極狹,才通人。」,是一個難以發現的地方。如果沒有任何一個原始人到達了這里,大家向著已知的最優位置靠近時,也難以發現這個「桃源之地」,而當大家越聚越攏之後,「桃源」被發現的可能性越來越低。雖然原始人們得到了他們的解,但這並不是我們所求的「桃源」,他們聚集之後失去了尋求「桃源」的可能,這群原始人便陷入了局部最優。

如果他們的策略是「不跟隨最優解」,那麼他們的策略是什麼呢?我也不知道,這個應該他們自己決定。畢竟「是什麼」比「不是什麼」的范圍要小的多。總之不跟隨最優解時,演算法會有自己特定的步驟來更新個體的位置,有可能是隨機在自己附近找,也有可能是隨機向別人學習。不跟隨最優解時,原始人們應該不會快速聚集到某一處,這樣一來他們的選擇更具多樣性。
按照更新過程對上面的演算法分類結果如下

可以看出上面不跟隨最優解的演算法只有遺傳演算法和差分進化演算法,他們的更新策略是與進化和基因的重組有關。因此這些不跟隨最優解的演算法,他們大多依據進化理論更新位置(基因)我把他們叫做進化演算法,而那些跟隨群體最優解的演算法,他們則大多依賴群體的配合協作,我把這些演算法叫做群智能演算法。

目前我只總結了這兩種,分類方法,如果你有更加優秀的分類方法,我們可以交流一下:

目錄
上一篇 優化演算法筆記(一)優化演算法的介紹
下一篇 優化演算法筆記(三)粒子群演算法(1)

D. 人工智慧中的演算法種類

SVM演算法,粒子群演算法,免疫演算法,種類太多了,各種演算法還有改進版,比如說遺傳神經網路。從某本書上介紹,各種演算法性能、效力等各不同,應依據具體問題選擇演算法。

E. 數據挖掘演算法有哪些

統計和可視化要想建立一個好的預言模型,你必須了解自己的數據。最基本的方法是計算各種統計變數(平均值、方差等)和察看數據的分布情況。你也可以用數據透視表察看多維數據。數據的種類可分為連續的,有一個用數字表示的值(比如銷售量)或離散的,分成一個個的類別(如紅、綠、藍)。離散數據可以進一步分為可排序的,數據間可以比較大小(如,高、中、低)和標稱的,不可排序(如郵政編碼)。圖形和可視化工具在數據准備階段尤其重要,它能讓你快速直觀的分析數據,而不是給你枯燥乏味的文本和數字。它不僅讓你看到整個森林,還允許你拉近每一棵樹來察看細節。在圖形模式下人們很容易找到數據中可能存在的模式、關系、異常等,直接看數字則很難。可視化工具的問題是模型可能有很多維或變數,但是我們只能在2維的屏幕或紙上展示它。比如,我們可能要看的是信用風險與年齡、性別、婚姻狀況、參加工作時間的關系。因此,可視化工具必須用比較巧妙的方法在兩維空間內展示n維空間的數據。雖然目前有了一些這樣的工具,但它們都要用戶「訓練」過他們的眼睛後才能理解圖中畫的到底是什麼東西。對於眼睛有色盲或空間感不強的人,在使用這些工具時可能會遇到困難。聚集(分群)聚集是把整個資料庫分成不同的群組。它的目的是要群與群之間差別很明顯,而同一個群之間的數據盡量相似。與分類不同(見後面的預測型數據挖掘),在開始聚集之前你不知道要把數據分成幾組,也不知道怎麼分(依照哪幾個變數)。因此在聚集之後要有一個對業務很熟悉的人來解釋這樣分群的意義。很多情況下一次聚集你得到的分群對你的業務來說可能並不好,這時你需要刪除或增加變數以影響分群的方式,經過幾次反復之後才能最終得到一個理想的結果。神經元網路和K-均值是比較常用的聚集演算法。不要把聚集與分類混淆起來。在分類之前,你已經知道要把數據分成哪幾類,每個類的性質是什麼,聚集則恰恰相反。關聯分析關聯分析是尋找資料庫中值的相關性。兩種常用的技術是關聯規則和序列模式。關聯規則是尋找在同一個事件中出現的不同項的相關性,比如在一次購買活動中所買不同商品的相關性。序列模式與此類似,他尋找的是事件之間時間上的相關性,如對股票漲跌的分析。關聯規則可記為A==>B,A稱為前提和左部(LHS),B稱為後續或右部(RHS)。如關聯規則「買錘子的人也會買釘子」,左部是「買錘子」,右部是「買釘子」。要計算包含某個特定項或幾個項的事務在資料庫中出現的概率只要在資料庫中直接統計即可。某一特定關聯(「錘子和釘子」)在資料庫中出現的頻率稱為支持度。比如在總共1000個事務中有15個事務同時包含了「錘子和釘子」,則此關聯的支持度為1.5%。非常低的支持度(比如1百萬個事務中只有一個)可能意味著此關聯不是很重要,或出現了錯誤數據(如,「男性和懷孕」)。要找到有意義的規則,我們還要考察規則中項及其組合出現的相對頻率。當已有A時,B發生的概率是多少?也即概率論中的條件概率。回到我們的例子,也就是問「當一個人已經買了錘子,那他有多大的可能也會買釘子?」這個條件概率在數據挖掘中也稱為可信度,計算方法是求百分比:(A與B同時出現的頻率)/(A出現的頻率)。讓我們用一個例子更詳細的解釋這些概念: 總交易筆數(事務數):1,000包含「錘子」:50包含「釘子」:80包含「鉗子」:20包含「錘子」和「釘子」:15包含「鉗子」和「釘子」:10包含「錘子」和「鉗子」:10包含「錘子」、「鉗子」和「釘子」:5 則可以計算出: 「錘子和釘子」的支持度=1.5%(15/1,000)「錘子、釘子和鉗子」的支持度=0.5%(5/1,000)「錘子==>釘子」的可信度=30%(15/50)「釘子==>錘子」的可信度=19%(15/80)「錘子和釘子==>鉗子」的可信度=33%(5/15)「鉗子==>錘子和釘子」的可信度=25%(5/20)

F. 基因演算法和遺傳演算法的區別

遺傳演算法
一種基於自然群體遺傳演化機制的高效探索演算法,它是美國學者Holland於1975年首先提出來的。它摒棄了傳統的搜索方式,模擬自然界生物進化過程,採用人工進化的方式對目標空間進行隨機化搜索。它將問題域中的可能解看作是群體的一個個體或染色體,並將每一個體編碼成符號串形式,模擬達爾文的遺傳選擇和自然淘汰的生物進化過程,對群體反復進行基於遺傳學的操作(遺傳,交叉和變異),根據預定的目標適應度函數對每個個體進行評價,依據適者生存,優勝劣汰的進化規則,不斷得到更優的群體,同時以全局並行搜索方式來搜索優化群體中的最優個體,求得滿足要求的最優解。
Holland創建的遺傳演算法是一種概率搜索演算法,它是利用某種編碼技術作用於稱為染色體的數串,其基本思想是模擬由這些組成的進化過程。跗演算法通過有組織地然而是隨機地信息交換重新組合那些適應性好的串,在每一代中,利用上一代串結構中適應好的位和段來生成一個新的串的群體;作為額外增添,偶爾也要在串結構中嘗試用新的位和段來替代原來的部分。
遺傳演算法是一類隨機化演算法,但是它不是簡單的隨機走動,它可以有效地利用已經有的信息處理來搜索那些有希望改善解質量的串,類似於自然進化,遺傳演算法通過作用於染色體上的基因,尋找好的染色體來求解問題。與自然界相似,遺傳演算法對待求解問題本身一無所知,它所需要的僅是對演算法所產生的每個染色體進行評價,並基於適應度值來造反染色體,使適用性好的染色體比適應性差的染色體有更多的繁殖機會。
基因演算法
一種生物進化的演算法,實際上是一種多目標的探索法.能夠用於計劃與排程.它是非常新的技術,目前,還沒有在商業中實際運用.
採用生物基因技術高級演算法,處理日益復雜的現實世界,也是人工智慧上,高級約束演算法上的挑戰. 基因演算法是一種搜索技術,它的目標是尋找最好的解決方案。這種搜索技術是一種優化組合,它以模仿生物進化過程為基礎。基因演算法的基本思想是,進化就是選擇了最優種類。基因演算法將應用APS上,以獲得「最優」的解決方案。

閱讀全文

與遺傳演算法的種類相關的資料

熱點內容
聚幣交易所app怎麼充值 瀏覽:161
加密文件如何解除加密iPad 瀏覽:920
太極張三豐懷舊源碼 瀏覽:103
2016考研大綱pdf 瀏覽:65
程序員sdk演算法 瀏覽:526
程序員聽診技巧 瀏覽:609
從技術走向管理pdf 瀏覽:820
思科命令行模式刪除用戶 瀏覽:565
一號玩家app怎麼換綁 瀏覽:322
emm平台源碼 瀏覽:328
從網頁下載資料伺服器地址 瀏覽:404
安卓用什麼播放器可以看港劇 瀏覽:455
keil5一編譯axf就缺失了 瀏覽:506
現代電機控制技術pdf 瀏覽:449
手機系統加密形同虛設是真的嗎 瀏覽:739
電視怎麼連接播放app 瀏覽:680
pdf怎麼轉換成word工具 瀏覽:865
c語言程序員成長 瀏覽:887
火影忍者手游助手app怎麼下 瀏覽:832
1997年四川空氣壓縮機廠 瀏覽:161