⑴ 請問壓縮感知重構omp演算法中的這句代碼,a=pinv(D(:,indx(1:j)))*x;廣義矩陣和信號的乘積 a是求的什麼呢
你對照著這個步驟再看看程序吧~
⑵ 畢業設計--基於壓縮感知的重構演算法性能比較(貪婪演算法和凸優化演算法)求指導
於壓縮感知的重構演算法性能比較(貪婪演算法和凸優化算
肯定
的
⑶ 有人在學壓縮感知嗎誰知道怎麼用0范數或者L1范數最小化重構原始信號或者給我文獻也行
用0范數或1范數解決cs重構歸屬一個數學問題,猶如給定你一個公式,利用這個公式或者說原理去做出很多的演算法,cs重構本歸屬與對0范數的求解問題上的。
但0范數屬於數學上一個NP_hard問題,是無法解決的,所以不能直接用求0范數的理論去做演算法,從而提出一系列基於求0范數最小的貪婪類演算法。如MP,OMP等演算法。,這類演算法中,最為基礎的算是MP演算法了。貪婪演算法的速度較快,但是重構效果相對較差,需要的測量數也較多,不能高效地壓縮信號,並且對測量矩陣的要求更高。但總的來說,應用范圍廣。
數學家同時發現,求解L1范數也可以逼近與0范數的效果,即把NP_hard問題轉化為線性規劃問題。所以現在有很多用求L1范數原理而創造了各類演算法,最典型的是BP(基追蹤)演算法和梯度投影稀疏重構演算法。這種演算法重構效果很好,但是運算量大,復雜,應用於實際上可能不大。至少得改進其演算法。
還有一大類演算法,我不關注,不說了。
具體那些演算法怎麼實現,自己去網上下程序模擬一下吧。。。。
⑷ 壓縮感知過時了嗎
沒有過時,依然是主流暢談的話題,使用度依舊廣泛。
壓縮感知的核心點在於,其不遵從奈奎斯特采樣定理。而這原因在於,壓縮感知的采樣是隨機的,不等間距的,故不用管奈奎斯特。不過壓縮感知也是有要求的,它需要保證信號是稀疏的。
一旦信號不稀疏,進行違背奈奎斯特的隨機非等間距采樣時,頻域上的交疊會導致難以恢復原始信號。在壓縮感知過程中,如果將采樣頻率降低,使得其很小,那麼采樣的時域間隔就會相對很大,加上一定方式的隨機采樣,此時采樣得到的數據量就會很小,從而實現了一種壓縮。
壓縮感知與傳統的采樣+壓縮的模式不同的是,它首先不遵從奈奎斯特采樣定理,其次,它並沒有分為采樣和壓縮,應該說,壓縮感知的采樣就是壓縮。采樣之後將采樣的數據直接傳輸,之後在接收端便可以通過適當的重構演算法進行重構。
⑸ 壓縮感知重構OMP演算法代碼
%A-稀疏系數矩陣
%D-字典/測量矩陣(已知)
%X-測量值矩陣(已知)
%K-稀疏度
function A=OMP(D,X,L)
[n,P]=size(X);
[n,K]=size(D);
for k=1:P
a=[];
x=X(:,k);
resial=x;%殘差
indx=zeros(L,1);%索引集
for j=1:L
proj=D'*resial;%D轉置與resial相乘,得到與resial與D每一列的內積值
pos=find(abs(proj)==max(abs(proj)));%找到內積最大值的位置
pos=pos(1);%若最大值不止一個,取第一個
indx(j)=pos;%將這個位置存入索引集的第j個值
a=pinv(D(:,indx(1:j)))*x;%indx(1:j)表示第一列前j個元素
resial=x-D(:,indx(1:j))*a;
end
temp=zeros(K,1);
temp(indx)=a;
A(:,k)=temp;%只顯示非零值及其位置
end
⑹ 壓縮感知的主要應用
認知無線電方向:寬頻譜感知技術是認識無線電應用中一個難點和重點。它通過快速尋找監測頻段中沒有利用的無線頻譜,從而為認知無線電用戶提供頻譜接入機會。傳統的濾波器組的寬頻檢測需要大量的射頻前端器件,並且不能靈活調整系統參數。普通的寬頻接收電路要求很高的采樣率,它給模數轉換器帶來挑戰,並且獲得的大量數據處理給數字信號處理器帶來負擔。針對寬頻譜感知的難題,將壓縮感知方法應用到寬頻譜感知中:採用一個寬頻數字電路,以較低的頻譜獲得欠采樣的隨機樣本,然後在數字信號處理器中採用稀疏信號估計演算法得到寬頻譜感知結果。
信道編碼:壓縮感測理論中關於稀疏性、隨機性和凸最優化的結論可以直接應用於設計快速誤差校正編碼, 這種編碼方式在實時傳輸過程中不受誤差的影響。在壓縮編碼過程中, 稀疏表示所需的基對於編碼器可能是未知的. 然而在壓縮感測編碼過程中, 它只在解碼和重構原信號時需要, 因此不需考慮它的結構, 所以可以用通用的編碼策略進行編碼. Haupt等通過實驗表明如果圖像是高度可壓縮的或者SNR充分大, 即使測量過程存在雜訊, 壓縮感測方法仍可以准確重構圖像。 波達方向估計:目標出現的角度在整個掃描空間來看,是極少數。波達方向估計問題在空間譜估計觀點來看是一個欠定的線性逆問題。通過對角度個數的稀疏限制,可以完成壓縮感知的波達方向估計。
波束形成:傳統的 自適應波束形成因其高解析度和抗干擾能力強等優點而被廣泛採用。但同時它的高旁瓣水平和角度失匹配敏感度高問題將大大降低接收性能。為了改進Capon 波束形成的性能,這些通過稀疏波束圖整形的方法限制波束圖中陣列增益較大的元素個數,同時鼓勵較大的陣列增益集中在波束主瓣中,從而達到降低旁瓣水平同時,提高主瓣中陣列增益水平,降低角度失匹配的影響。例如,最大主瓣旁瓣能量比,混合范數法,最小全變差。 運用壓縮感測原理, RICE大學成功研製了單像素壓縮數碼照相機。 設計原理首先是通過光路系統將成像目標投影到一個數字微鏡器件(DMD)上, 其反射光由透鏡聚焦到單個光敏二極體上, 光敏二極體兩端的電壓值即為一個測量值y, 將此投影操作重復M次, 得到測量向量 , 然後用最小全變分演算法構建的數字信號處理器重構原始圖像。數字微鏡器件由數字電壓信號控制微鏡片的機械運動以實現對入射光線的調整。 由於該相機直接獲取的是M次隨機線性測量值而不是獲取原始信號的N(M,N)個像素值, 為低像素相機拍攝高質量圖像提供了可能.。
壓縮感測技術也可以應用於雷達成像領域, 與傳統雷達成像技術相比壓縮感測雷達成像實現了兩個重要改進: 在接收端省去脈沖壓縮匹配濾波器; 同時由於避開了對原始信號的直接采樣, 降低了接收端對模數轉換器件帶寬的要求. 設計重點由傳統的設計昂貴的接收端硬體轉化為設計新穎的信號恢復演算法, 從而簡化了雷達成像系統。 生物感測中的傳統DNA晶元能平行測量多個有機體, 但是只能識別有限種類的有機體, Sheikh等人運用壓縮感測和群組檢測原理設計的壓縮感測DNA晶元克服了這個缺點。 壓縮感測DNA晶元中的每個探測點都能識別一組目標, 從而明顯減少了所需探測點數量. 此外基於生物體基因序列稀疏特性, Sheikh等人驗證了可以通過置信傳播的方法實現壓縮感測DNA晶元中的信號重構。
⑺ 壓縮感知是什麼
壓縮感知,又稱壓縮采樣,壓縮感測。它作為一個新的采樣理論,它通過開發信號的稀疏特性,在遠小於Nyquist 采樣率的條件下,用隨機采樣獲取信號的離散樣本,然後通過非線性重建演算法完美的重建信號。壓縮感知理論一經提出,就引起學術界和工業的界的廣泛關注。他在資訊理論、圖像處理、地球科學、光學/微波成像、模式識別、無線通信、大氣、地質等領域受到高度關注,並被美國科技評論評為2007年度十大科技進展。
壓縮感知理論的核心思想主要包括兩點。
第一個是信號的稀疏結構。傳統的Shannon 信號表示方法只開發利用了最少的被采樣信號的先驗信息,即信號的帶寬。但是,現實生活中很多廣受關注的信號本身具有一些結構特點。相對於帶寬信息的自由度,這些結構特點是由信號的更小的一部分自由度所決定。換句話說,在很少的信息損失情況下,這種信號可以用很少的數字編碼表示。所以,在這種意義上,這種信號是稀疏信號(或者近似稀疏信號、可壓縮信號)。
另外一點是不相關特性。稀疏信號的有用信息的獲取可以通過一個非自適應的采樣方法將信號壓縮成較小的樣本數據來完成。理論證明壓縮感知的采樣方法只是一個簡單的將信號與一組確定的波形進行相關的操作。這些波形要求是與信號所在的稀疏空間不相關的。壓縮感知壓縮感知方法拋棄了當前信號采樣中的冗餘信息。它直接從連續時間信號變換得到壓縮樣本,然後在數字信號處理中採用優化方法處理壓縮樣本。這里恢復信號所需的優化演算法常常是一個已知信號稀疏的欠定線性逆問題。
⑻ 稀疏度為1的信號,用壓縮感知恢復原始信號,匹配追蹤演算法(MP)和正交匹配追蹤演算法(OMP)的結果一樣嗎
壓縮感知(Compressed Sensing, CS)[1]理論具有全新的信號獲取和處理方式,該理論解決了傳統的Nyquist方法采樣頻率較高的問題,大大降低了稀疏信號精確重構所需的采樣頻率。
另外,CS理論在數據採集的同時完成數據壓縮,從而節約了軟、硬體資源及處理時間。
這些突出優點使其在信號處理領域有著廣闊的應用前景!
⑼ 壓縮感知的基本知識
現代信號處理的一個關鍵基礎是 Shannon 采樣理論:一個信號可以無失真重建所要求的離散樣本數由其帶寬決定。但是Shannon 采樣定理是一個信號重建的充分非必要條件。在過去的幾年內,壓縮感知作為一個新的采樣理論,它可以在遠小於Nyquist 采樣率的條件下獲取信號的離散樣本,保證信號的無失真重建。壓縮感知理論一經提出,就引起學術界和工業界的廣泛關注。
壓縮感知理論的核心思想主要包括兩點。第一個是信號的稀疏結構。傳統的Shannon 信號表示方法只開發利用了最少的被采樣信號的先驗信息,即信號的帶寬。但是,現實生活中很多廣受關注的信號本身具有一些結構特點。相對於帶寬信息的自由度,這些結構特點是由信號的更小的一部分自由度所決定。換句話說,在很少的信息損失情況下,這種信號可以用很少的數字編碼表示。所以,在這種意義上,這種信號是稀疏信號(或者近似稀疏信號、可壓縮信號)。另外一點是不相關特性。稀疏信號的有用信息的獲取可以通過一個非自適應的采樣方法將信號壓縮成較小的樣本數據來完成。理論證明壓縮感知的采樣方法只是一個簡單的將信號與一組確定的波形進行相關的操作。這些波形要求是與信號所在的稀疏空間不相關的。
壓縮感知方法拋棄了當前信號采樣中的冗餘信息。它直接從連續時間信號變換得到壓縮樣本,然後在數字信號處理中採用優化方法處理壓縮樣本。這里恢復信號所需的優化演算法常常是一個已知信號稀疏的欠定線性逆問題。
⑽ 壓縮感知重構演算法的復雜度是如何分析分析的
壓縮感知,又稱壓縮采樣,壓縮感測。它作為一個新的采樣理論,它通過開發信號的稀疏特性,在遠小於Nyquist 采樣率的條件下,用隨機采樣獲取信號的離散樣本,然後通過非線性重建演算法完美的重建信號。
2811 SAF ESS operated 急停關作