A. 演算法的基本概念和特徵
演算法是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法中的指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化演算法在內的一些演算法,包含了一些隨機輸入。
一、數據對象的運算和操作:計算機可以執行的基本操作是以指令的形式描述的。一個計算機系統能執行的所有指令的集合,成為該計算機系統的指令系統。一個計算機的基本運算和操作有如下四類:
1.算術運算:加減乘除等運算。
2.邏輯運算:或、且、非等運算。
3.關系運算:大於、小於、等於、不等於等運算。
4.數據傳輸:輸入、輸出、賦值等運算。
二、演算法的控制結構:一個演算法的功能結構不僅取決於所選用的操作,而且還與各操作之間的執行順序有關。
B. 簡述演算法的定義和特徵以及它在c語言編程中如何使用的
一、什麼是演算法
演算法是一系列解決問題的清晰指令,也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。演算法常常含有重復的步驟和一些比較或邏輯判斷。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法的時間復雜度是指演算法需要消耗的時間資源。一般來說,計算機演算法是問題規模n 的函數f(n),演算法執行的時間的增長率與f(n) 的增長率正相關,稱作漸進時間復雜度(Asymptotic Time Complexity)。時間復雜度用「O(數量級)」來表示,稱為「階」。常見的時間復雜度有: O(1)常數階;O(log2n)對數階;O(n)線性階;O(n2)平方階。
演算法的空間復雜度是指演算法需要消耗的空間資源。其計算和表示方法與時間復雜度類似,一般都用復雜度的漸近性來表示。同時間復雜度相比,空間復雜度的分析要簡單得多。
二、演算法設計的方法
1.遞推法
遞推法是利用問題本身所具有的一種遞推關系求問題解的一種方法。設要求問題規模為N的解,當N=1時,解或為已知,或能非常方便地得到解。能採用遞推法構造演算法的問題有重要的遞推性質,即當得到問題規模為i-1的解後,由問題的遞推性質,能從已求得的規模為1,2,…,i-1的一系列解,構造出問題規模為I的解。這樣,程序可從i=0或i=1出發,重復地,由已知至i-1規模的解,通過遞推,獲得規模為i的解,直至得到規模為N的解。
C. 什麼是演算法演算法的概念演算法的特點都有哪些
1、演算法概念:
在數學上,現代意義上的「演算法」通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內完成.
2. 演算法的特點:
(1)有限性:一個演算法的步驟序列是有限的,必須在有限操作之後停止,不能是無限的.
(2)確定性:演算法中的每一步應該是確定的並且能有效地執行且得到確定的結果,而不應當是模稜兩可.
(3)順序性與正確性:演算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的後繼步驟,前一步是後一步的前提,只有執行完前一步才能進行下一步,並且每一步都准確無誤,才能完成問題.
(4)不唯一性:求解某一個問題的解法不一定是唯一的,對於一個問題可以有不同的演算法.
(5)普遍性:很多具體的問題,都可以設計合理的演算法去解決,如心算、計算器計算都要經過有限、事先設計好的步驟加以解決.
D. 演算法的描述、特性以及概念
描述演算法的方法有多種,常用的有自然語言、結構化流程圖、偽代碼和PAD圖等,其中最普遍的是流程圖。
分類:演算法可大致分為基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法,厄米變形模型,隨機森林演算法。
特徵:有窮性,演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;確切性,演算法的每一步驟必須有確切的定義;輸入項:一個演算法有0個或多個輸入,;輸出項;可行性,演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步,即每個計算步都可以在有限時間內完成。
(4)演算法定義擴展閱讀
演算法歷史:
「演算法」即演演算法的大陸中文名稱出自《周髀算經》;而英文名稱Algorithm 來自於9世紀波斯數學家al-Khwarizmi,al-Khwarizmi在數學上提出了演算法這個概念。「演算法」,意思是阿拉伯數字的運演算法則,在18世紀演變為"algorithm"。
因為巴貝奇未能完成他的巴貝奇分析機,這個演算法未能在巴貝奇分析機上執行。 20世紀的英國數學家圖靈提出了著名的圖靈論題,並提出一種假想的計算機的抽象模型,這個模型被稱為圖靈機。圖靈機的出現解決了演算法定義的難題,圖靈的思想對演算法的發展起到了重要作用。
E. 演算法的概念
演算法(Algorithm)是解題的步驟,可以把演算法定義成解一確定類問題的任意一種特殊的方法。在計算機科學中,演算法要用計算機演算法語言描述,演算法代表用計算機解一類問題的精確、有效的方法。演算法+數據結構=程序,求解一個給定的可計算或可解的問題,不同的人可以編寫出不同的程序,來解決同一個問題,這里存在兩個問題:一是與計算方法密切相關的演算法問題;二是程序設計的技術問題。演算法和程序之間存在密切的關系。
演算法是一組有窮的規則,它們規定了解決某一特定類型問題的一系列運算,是對解題方案的准確與完整的描述。制定一個演算法,一般要經過設計、確認、分析、編碼、測試、調試、計時等階段。
對演算法的學習包括五個方面的內容:① 設計演算法。演算法設計工作是不可能完全自動化的,應學習了解已經被實踐證明是有用的一些基本的演算法設計方法,這些基本的設計方法不僅適用於計算機科學,而且適用於電氣工程、運籌學等領域;② 表示演算法。描述演算法的方法有多種形式,例如自然語言和演算法語言,各自有適用的環境和特點;③確認演算法。演算法確認的目的是使人們確信這一演算法能夠正確無誤地工作,即該演算法具有可計算性。正確的演算法用計算機演算法語言描述,構成計算機程序,計算機程序在計算機上運行,得到演算法運算的結果;④ 分析演算法。演算法分析是對一個演算法需要多少計算時間和存儲空間作定量的分析。分析演算法可以預測這一演算法適合在什麼樣的環境中有效地運行,對解決同一問題的不同演算法的有效性作出比較;⑤ 驗證演算法。用計算機語言描述的演算法是否可計算、有效合理,須對程序進行測試,測試程序的工作由調試和作時空分布圖組成。
F. 演算法概念!
a的錯誤在於,看似包容的很全面,但敘述中恰恰不包含1個輸入/輸出!
c的無限循環永遠不會等到結果,這樣的演算法有何用?
G. 演算法的概念是什麼
演算法是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。
演算法中的指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化演算法在內的一些演算法,包含了一些隨機輸入。
演算法優勢介紹
提升學習能力,以「阿爾法狗」為代表的自主學習技術,已在某些領域展現超出人類的學習能力,而其根本技術就來源於深度學習演算法領域上的飛躍式突破。要進一步實現戰場上的人工智慧腦力,必然要發展更接近於人腦的自主學習演算法模型和以此為基礎的軍事應用。
實現智能決策,戰場博弈的制勝關鍵之一,就在於全面掌握並應對各種可能性。在智能化作戰多域一體的戰場空間內,利用演算法模型全方位分析態勢,進而輔助人腦決策,必然會在戰場上展示出強大的「智力集中」優勢。
在模式識別和分析方面,可利用機器學習演算法模型,提供敵方目標自動化識別方案,集成戰場態勢信息數據,在己方火控、防空系統部署前,對敵方行動進行充分預測。
H. 演算法是什麼
在數學和計算機科學中,演算法是如何解決一類問題的明確規范。
演算法可以執行計算、數據處理、自動推理和其他任務。
作為一種有效的方法,演算法可以在有限的空間和時間內用定義明確的形式語言[1] 來表示,以計算函數[2] [3] 。從初始狀態和初始輸入(可能為空)開始,[4] 指令描述了一種計算,當執行該計算時,該計算通過有限的[5] 數量的明確定義的連續狀態,最終產生的「輸出」[6] 並終止於最終結束狀態。從一種狀態到下一種狀態的轉變不一定是 明確的;一些被稱為隨機演算法的演算法包含隨機輸入。[7]
I. 何謂演算法演算法有什麼性質
演算法(algorithm),在數學(算學)和計算機科學之中,為任何一系列良定義的具體計算步驟,常用於計算、數據處理和自動推理。作為一個有效方法,演算法被用於計算函數,它包含了一系列定義清晰的指令,並可於有限的時間及空間內清楚的表述出來。
特點:
1、輸入:一個演算法必須有零個或以上輸入量。
2、輸出:一個演算法應有一個或以上輸出量,輸出量是演算法計算的結果。
3、明確性:演算法的描述必須無歧義,以保證演算法的實際執行結果是精確地符合要求或期望,通常要求實際運行結果是確定的。
4、有限性:依據圖靈的定義,一個演算法是能夠被任何圖靈完備系統模擬的一串運算,而圖靈機只有有限個狀態、有限個輸入符號和有限個轉移函數(指令)。而一些定義更規定演算法必須在有限個步驟內完成任務。
5、有效性:又稱可行性。能夠實現,演算法中描述的操作都是可以通過已經實現的基本運算執行有限次來實現。
(9)演算法定義擴展閱讀:
常用設計模式
完全遍歷法和不完全遍歷法:在問題的解是有限離散解空間,且可以驗證正確性和最優性時,最簡單的演算法就是把解空間的所有元素完全遍歷一遍,逐個檢測元素是否是我們要的解。
這是最直接的演算法,實現往往最簡單。但是當解空間特別龐大時,這種演算法很可能導致工程上無法承受的計算量。這時候可以利用不完全遍歷方法——例如各種搜索法和規劃法——來減少計算量。
1、分治法:把一個問題分割成互相獨立的多個部分分別求解的思路。這種求解思路帶來的好處之一是便於進行並行計算。
2、動態規劃法:當問題的整體最優解就是由局部最優解組成的時候,經常採用的一種方法。
3、貪心演算法:常見的近似求解思路。當問題的整體最優解不是(或無法證明是)由局部最優解組成,且對解的最優性沒有要求的時候,可以採用的一種方法。
4、簡並法:把一個問題通過邏輯或數學推理,簡化成與之等價或者近似的、相對簡單的模型,進而求解的方法。