A. 演算法工程師需要學什麼,有考試嗎
1.演算法工程師要求很高的數學水平和邏輯思維。其實語言是次要的,語言只是表達的方式而已。
2 你想成為演算法工程師還需要一定的英文水準,因為看中文書你完全體會不到原滋味。
3 不要太拘泥於教材。
高數,線性代數,離散數學,數據結構
B. 成為演算法工程師需要學習哪些課程
演算法工程師要求很高的數學水平和邏輯思維。需要學習高數,線性代數,離散數學,數據結構和計算機等課程。
專業要求:計算機、電子、通信、數學等相關專業;
學歷要求:本科及其以上的學歷,大多數是碩士學歷及其以上;
語言要求:英語要求是熟練,基本上能閱讀國外專業書刊;
必須掌握計算機相關知識,熟練使用模擬工具MATLAB等,必須會一門編程語言。
國內外狀況
國內從事演算法研究的工程師不少,但是高級演算法工程師卻很少,是一個非常緊缺的專業工程師。
演算法工程師根據研究領域來分主要有音頻/視頻演算法處理、圖像技術方面的二維信息演算法處理和通信物理層、雷達信號處理、生物醫學信號處理等領域的一維信息演算法處理。
C. 想從事演算法工程師這個崗位要考什麼證件嗎
演算法工程師是一個比較高端的職位,理論上也不需要學歷,但是碩士博士肯定是給人第一印象會好很多。這個主要難度是理解各類數據科學的演算法,這對數學要求是很高的。七月在線的演算法工程師課程有很多,現在也有團購活動,你可以去了解下。這個應該是要一定的基礎才可以學習,希望對你有幫助。
D. 演算法工程師應該學哪些
一、演算法工程師簡介
(通常是月薪15k以上,年薪18萬以上,只是一個概數,具體薪資可以到招聘網站如拉鉤,獵聘網上看看)
演算法工程師目前是一個高端也是相對緊缺的職位;
演算法工程師包括
音/視頻演算法工程師(通常統稱為語音/視頻/圖形開發工程師)、圖像處理演算法工程師、計算機視覺演算法工程師、通信基帶演算法工程師、信號演算法工程師、射頻/通信演算法工程師、自然語言演算法工程師、數據挖掘演算法工程師、搜索演算法工程師、控制演算法工程師(雲台演算法工程師,飛控演算法工程師,機器人控制演算法)、導航演算法工程師(
@之介
感謝補充)、其他【其他一切需要復雜演算法的行業】
專業要求:計算機、電子、通信、數學等相關專業;
學歷要求:本科及其以上的學歷,大多數是碩士學歷及其以上;
語言要求:英語要求是熟練,基本上能閱讀國外專業書刊,做這一行經常要讀論文;
必須掌握計算機相關知識,熟練使用模擬工具MATLAB等,必須會一門編程語言。
演算法工程師的技能樹(不同方向差異較大,此處僅供參考)
1 機器學習
2 大數據處理:熟悉至少一個分布式計算框架Hadoop/Spark/Storm/ map-rece/MPI
3 數據挖掘
4 扎實的數學功底
5 至少熟悉C/C++或者java,熟悉至少一門編程語言例如java/python/R
加分項:具有較為豐富的項目實踐經驗(不是水論文的哪種)
二、演算法工程師大致分類與技術要求
(一)圖像演算法/計算機視覺工程師類
包括
圖像演算法工程師,圖像處理工程師,音/視頻處理演算法工程師,計算機視覺工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:機器學習,模式識別
l
技術要求:
(1) 精通DirectX HLSL和OpenGL GLSL等shader語言,熟悉常見圖像處理演算法GPU實現及優化;
(2) 語言:精通C/C++;
(3) 工具:Matlab數學軟體,CUDA運算平台,VTK圖像圖形開源軟體【醫學領域:ITK,醫學圖像處理軟體包】
(4) 熟悉OpenCV/OpenGL/Caffe等常用開源庫;
(5) 有人臉識別,行人檢測,視頻分析,三維建模,動態跟蹤,車識別,目標檢測跟蹤識別經歷的人優先考慮;
(6) 熟悉基於GPU的演算法設計與優化和並行優化經驗者優先;
(7) 【音/視頻領域】熟悉H.264等視頻編解碼標准和FFMPEG,熟悉rtmp等流媒體傳輸協議,熟悉視頻和音頻解碼演算法,研究各種多媒體文件格式,GPU加速;
應用領域:
(1) 互聯網:如美顏app
(2) 醫學領域:如臨床醫學圖像
(3) 汽車領域
(4) 人工智慧
相關術語:
(1) OCR:OCR (Optical Character Recognition,光學字元識別)是指電子設備(例如掃描儀或數碼相機)檢查紙上列印的字元,通過檢測暗、亮的模式確定其形狀,然後用字元識別方法將形狀翻譯成計算機文字的過程
(2) Matlab:商業數學軟體;
(3) CUDA: (Compute Unified Device Architecture),是顯卡廠商NVIDIA推出的運算平台(由ISA和GPU構成)。 CUDA™是一種由NVIDIA推出的通用並行計算架構,該架構使GPU能夠解決復雜的計算問題
(4) OpenCL: OpenCL是一個為異構平台編寫程序的框架,此異構平台可由CPU,GPU或其他類型的處理器組成。
(5) OpenCV:開源計算機視覺庫;OpenGL:開源圖形庫;Caffe:是一個清晰,可讀性高,快速的深度學習框架。
(6) CNN:(深度學習)卷積神經網路(Convolutional Neural Network)CNN主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形。
(7) 開源庫:指的是計算機行業中對所有人開發的代碼庫,所有人均可以使用並改進代碼演算法。
(二)機器學習工程師
包括
機器學習工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:人工智慧,機器學習
l
技術要求:
(1) 熟悉Hadoop/Hive以及Map-Rece計算模式,熟悉Spark、Shark等尤佳;
(2) 大數據挖掘;
(3) 高性能、高並發的機器學習、數據挖掘方法及架構的研發;
應用領域:
(1)人工智慧,比如各類模擬、擬人應用,如機器人
(2)醫療用於各類擬合預測
(3)金融高頻交易
(4)互聯網數據挖掘、關聯推薦
(5)無人汽車,無人機
相關術語:
(1) Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(三)自然語言處理工程師
包括
自然語言處理工程師
要求
l
專業:計算機相關專業;
l
技術領域:文本資料庫
l
技術要求:
(1) 熟悉中文分詞標注、文本分類、語言模型、實體識別、知識圖譜抽取和推理、問答系統設計、深度問答等NLP 相關演算法;
(2) 應用NLP、機器學習等技術解決海量UGC的文本相關性;
(3) 分詞、詞性分析、實體識別、新詞發現、語義關聯等NLP基礎性研究與開發;
(4) 人工智慧,分布式處理Hadoop;
(5) 數據結構和演算法;
應用領域:
口語輸入、書面語輸入
、語言分析和理解、語言生成、口語輸出技術、話語分析與對話、文獻自動處理、多語問題的計算機處理、多模態的計算機處理、信息傳輸與信息存儲 、自然語言處理中的數學方法、語言資源、自然語言處理系統的評測。
相關術語:
(2) NLP:人工智慧的自然語言處理,NLP (Natural Language Processing) 是人工智慧(AI)的一個子領域。NLP涉及領域很多,最令我感興趣的是「中文自動分詞」(Chinese word segmentation):結婚的和尚未結婚的【計算機中卻有可能理解為結婚的「和尚「】
(四)射頻/通信/信號演算法工程師類
包括
3G/4G無線通信演算法工程師, 通信基帶演算法工程師,DSP開發工程師(數字信號處理),射頻通信工程師,信號演算法工程師
要求
l
專業:計算機、通信相關專業;
l
技術領域:2G、3G、4G,BlueTooth(藍牙),WLAN,無線移動通信, 網路通信基帶信號處理
l
技術要求:
(1) 了解2G,3G,4G,BlueTooth,WLAN等無線通信相關知識,熟悉現有的通信系統和標准協議,熟悉常用的無線測試設備;
(2) 信號處理技術,通信演算法;
(3) 熟悉同步、均衡、信道解碼等演算法的基本原理;
(4) 【射頻部分】熟悉射頻前端晶元,扎實的射頻微波理論和測試經驗,熟練使用射頻電路模擬工具(如ADS或MW或Ansoft);熟練使用cadence、altium designer PCB電路設計軟體;
(5) 有扎實的數學基礎,如復變函數、隨機過程、數值計算、矩陣論、離散數學
應用領域:
通信
VR【用於快速傳輸視頻圖像,例如樂客靈境VR公司招募的通信工程師(數據編碼、流數據)】
物聯網,車聯網
導航,軍事,衛星,雷達
相關術語:
(1) 基帶信號:指的是沒有經過調制(進行頻譜搬移和變換)的原始電信號。
(2) 基帶通信(又稱基帶傳輸):指傳輸基帶信號。進行基帶傳輸的系統稱為基帶傳輸系統。傳輸介質的整個信道被一個基帶信號佔用.基帶傳輸不需要數據機,設備化費小,具有速率高和誤碼率低等優點,.適合短距離的數據傳輸,傳輸距離在100米內,在音頻市話、計算機網路通信中被廣泛採用。如從計算機到監視器、列印機等外設的信號就是基帶傳輸的。大多數的區域網使用基帶傳輸,如乙太網、令牌環網。
(3) 射頻:射頻(RF)是Radio Frequency的縮寫,表示可以輻射到空間的電磁頻率(電磁波),頻率范圍從300KHz~300GHz之間(因為其較高的頻率使其具有遠距離傳輸能力)。射頻簡稱RF射頻就是射頻電流,它是一種高頻交流變化電磁波的簡稱。每秒變化小於1000次的交流電稱為低頻電流,大於10000次的稱為高頻電流,而射頻就是這樣一種高頻電流。高頻(大於10K);射頻(300K-300G)是高頻的較高頻段;微波頻段(300M-300G)又是射頻的較高頻段。【有線電視就是用射頻傳輸方式】
(4) DSP:數字信號處理,也指數字信號處理晶元
(五)數據挖掘演算法工程師類
包括
推薦演算法工程師,數據挖掘演算法工程師
要求
l
專業:計算機、通信、應用數學、金融數學、模式識別、人工智慧;
l
技術領域:機器學習,數據挖掘
l
技術要求:
(1) 熟悉常用機器學習和數據挖掘演算法,包括但不限於決策樹、Kmeans、SVM、線性回歸、邏輯回歸以及神經網路等演算法;
(2) 熟練使用SQL、Matlab、Python等工具優先;
(3) 對Hadoop、Spark、Storm等大規模數據存儲與運算平台有實踐經驗【均為分布式計算框架】
(4) 數學基礎要好,如高數,統計學,數據結構
l
加分項:數據挖掘建模大賽;
應用領域
(1) 個性化推薦
(2) 廣告投放
(3) 大數據分析
相關術語
Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(六)搜索演算法工程師
要求
l
技術領域:自然語言
l
技術要求:
(1) 數據結構,海量數據處理、高性能計算、大規模分布式系統開發
(2) hadoop、lucene
(3) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗
(4) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗;
(5) 精通倒排索引、全文檢索、分詞、排序等相關技術;
(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;
(7) 優秀的資料庫設計和優化能力,精通MySQL資料庫應用 ;
(8) 了解推薦引擎和數據挖掘和機器學習的理論知識,有大型搜索應用的開發經驗者優先。
(七)控制演算法工程師類
包括了雲台控制演算法,飛控控制演算法,機器人控制演算法
要求
l
專業:計算機,電子信息工程,航天航空,自動化
l
技術要求:
(1) 精通自動控制原理(如PID)、現代控制理論,精通組合導航原理,姿態融合演算法,電機驅動,電機驅動
(2) 卡爾曼濾波,熟悉狀態空間分析法對控制系統進行數學模型建模、分析調試;
l
加分項:有電子設計大賽,機器人比賽,robocon等比賽經驗,有硬體設計的基礎;
應用領域
(1)醫療/工業機械設備
(2)工業機器人
(3)機器人
(4)無人機飛控、雲台控制等
(八)導航演算法工程師
要求
l 專業:計算機,電子信息工程,航天航空,自動化
l 技術要求(以公司職位JD為例)
公司一(1)精通慣性導航、激光導航、雷達導航等工作原理;
(2)精通組合導航演算法設計、精通卡爾曼濾波演算法、精通路徑規劃演算法;
(3)具備導航方案設計和實現的工程經驗;
(4)熟悉C/C++語言、熟悉至少一種嵌入式系統開發、熟悉Matlab工具;
公司二(1)熟悉基於視覺信息的SLAM、定位、導航演算法,有1年以上相關的科研或項目經歷;
(2)熟悉慣性導航演算法,熟悉IMU與視覺信息的融合;
應用領域
無人機、機器人等。
E. 如何成為演算法工程師 推薦幾本演算法入門書籍
是哪方面的演算法工程師?
信號處理演算法:書比較多,可以看看《數字信號處理》
體征(醫療)信號演算法:先要讀懂醫療的電信號,先看看醫療電信號的書
自動化控制演算法:
軌跡、速度規劃相關,資料很多,直接讀論文更快
控制演算法相關的,可以看看《自動控制原理》
機器人運動學、動力學相關的,可以看看李澤湘的《機器人數學導論》
無人機相關的,也可以看《機器人數學導論》,搜李澤湘學生的論文,看看《李群和李代數》,了解旋量理論,看一下PX4的開源代碼
機器學習/深度學習演算法:李航的《統計學習方法》、搜一下ufldl文檔看一下、還有周志華的西瓜書
通用的可以看看《高等代數》、《最優化原理》和《常微分》
F. 想要成為演算法工程師,要學習哪些課程一般是什麼專業的可以做
演算法工程師要求很高的數學水平和邏輯思維。需要學習高數,線性代數,離散數學,數據結構和計算機等課程。
專業要求:計算機、電子、通信、數學等專業。
演算法工程師簡介:
演算法工程師根據研究領域來分主要有音頻/視頻演算法處理、圖像技術方面的二維信息演算法處理和通信物理層、雷達信號處理、生物醫學信號處理等領域的一維信息演算法處理。
在計算機音視頻和圖形圖形圖像技術等二維信息演算法處理方面目前比較先進的視頻處理演算法:機器視覺成為此類演算法研究的核心。
另外還有2D轉3D演算法(2D-to-3D conversion),去隔行演算法(de-interlacing),運動估計運動補償演算法(Motion estimation/Motion Compensation),去噪演算法(Noise Rection)。
縮放演算法(scaling),銳化處理演算法(Sharpness),超解析度演算法(Super Resolution),手勢識別(gesture recognition),人臉識別(face recognition)。
以上內容參考:網路-演算法工程師
G. 有哪些 Python 經典書籍
《Python編程入門:從入門到實踐》
【同時使用Python 2.X和3.X講解】
Amazon編程入門類榜首圖書,最值得關注的Python入門書
從基本概念到完整項目開發,幫助零基礎讀者迅速掌握Python編程,開發實際項目
這本書分兩部分:
第一部分介紹用Python編程所必須了解的基本概念,包括matplotlib、NumPy和Pygal等強大的Python庫和工具介紹,以及列表、字典、if語句、類、文件與異常、代碼測試等內容;
第二部分將理論付諸實踐,講解如何開發三個項目,包括簡單的Python 2D游戲開發,如何利用數據生成互動式的信息圖,以及創建和定製簡單的Web應用,並幫讀者解決常見編程問題和困惑。
《Python基礎教程(第2版·修訂版)》
【Python 2.5講解,Python 3上也能運行】
各大網店最暢銷的Python入門書
全書分為三部分。
第一部分講述Python語法,沒有廢話,還摻入了一些Python 3.0要注意的細節。
第二部分介紹了常用的GUI、框架等應用,點到即止,算是為第三部分做鋪墊了,從數目眾多的應用中可以了解到Python的強大。
第三部分是Project,全書最大的亮點,大家肯定喜歡。
作者將前面講述的內容應用到10個引人入勝的項目中,並以模板的形式介紹了項目的開發過程,手把手教授Python開發。
《Python語言及其應用》
【Python 3.X】
語言風格輕松詼諧,講解多種Python工具和第三方庫
實例涉及商業、科研以及藝術領域使用Python開發各種應用
亞馬遜最受歡迎的Python編程書之一,評分4.5
書中首先介紹了Python的基礎知識,然後逐漸深入多種主題,結合教程和攻略式風格來講解Python 3中的概念。每章結尾的練習可以幫助你鞏固所學的知識。
本書會為你學習Python打下堅實的基礎,包括測試、調試、代碼復用的最佳實踐以及其他開發技巧。
《Python編程入門(第3版)》
【Python 3.X 】
從算術運算、字元串、變數,到函數、數據結構、輸入輸出和異常處理,應有盡有
《父與子的編程之旅:與小卡特一起學Python》
【Python 2.X 】
原版Amazon 最受歡迎的青少年編程圖書
最簡單易學的內容組織方式,老少皆宜
第一版獲Jolt大獎
本書中,Warren和Carter父子以親切的筆調、通俗的語言,透徹全面地介紹了計算機編程世界。
他們以簡單易學的Python語言為例,通過可愛的漫畫、有趣的例子,生動地介紹了變數、循環、輸入和輸出、數據結構以及圖形用戶界面等編程的基本概念。
只要懂得計算機的基本操作,如啟動程序、保存文件,任何人都可以跟隨本書,由簡入難,學會編寫程序,甚至製作游戲。
本書內容經過教育專家的評審,經過孩子的親身檢驗,並得到了家長的認可。
《編程導論》
【Python 2.7】
以麻省理工學院開放式課程(OpenCourseWare)中最受歡迎的計算機科學課程為基礎,旨在培養讀者的編程思維,使讀者擁有計算機科學家的視野
本書涵蓋了Python的大部分特性,重點介紹如何使用Python這門語言,共包含編程基礎、Python程序設計語言、理解計算的關鍵概念、計算問題的解決技術等四個方面。
本書將Python語言特性和編程方法貫穿全書,目的是幫助讀者在學習Python的同時掌握如何使用計算來解決有趣的問題。
《流暢的Python》
【兼顧Python 3和Python 2】
PSF研究員、知名PyCon演講者心血之作
Python核心開發人員擔綱技術審校
全面深入,對Python語言關鍵特性剖析到位
大量詳盡代碼示例,並附有主題相關高質量參考文獻和視頻鏈接
本書致力於幫助Python開發人員挖掘這門語言及相關程序庫的優秀特性,避免重復勞動,同時寫出簡潔、流暢、易讀、易維護,並且具有地道Python風格的代碼。本書尤其深入探討了Python語言的高級用法,涵蓋數據結構、Python風格的對象、並行與並發,以及元編程等不同的方面。
《Python項目開發實戰(第2版)》
【Python 2.7】
網羅Python項目開發中的流程,讓你的編程事半功倍
Python項目與封裝/團隊開發環境/問題驅動開發/源碼管理(Mercurial) Jenkins持續集成(CI)/環境搭建與部署的自動化(Ansible)/Django框架……
這是一本偏工程的圖書,沒怎麼講Python語言基礎知識,直接告訴你怎麼搭建開發環境,做好代碼管理和文檔管理以及缺陷管理等工作。
《Python網路編程攻略》
【Python 2.7】
可作為任何一門網路編程課程中培養實踐技能的補充材料
需要讀者對Python語言及TCP/IP等基本的網路概念有了解,但即使不精通也能通過本書理解相關概念
本書全面介紹了Python網路編程涉及的重要問題,包括網路編程、系統和網路管理、網路監控以及Web應用開發。作者通過70多篇攻略,清晰簡明地描述了各種網路任務和問題,提出了可用於多種場景的解決方案,並細致地分析了整個操作過程。
《Python網路編程(第3版)》
【Python 3.X】
涵蓋網路編程所有經典話題,提供大量代碼清單及示例
從應用開發角度介紹網路編程基本概念、模塊以及第三方庫
本書針對想要深入理解使用Python來解決網路相關問題或是構建網路應用程序的技術人員,結合實例講解了網路協議、網路數據及錯誤、電子郵件、伺服器架構和HTTP及Web應用程序等經典話題。
具體內容包括:全面介紹Python3中最新提供的SSL支持,非同步I/O循環的編寫,用Flask框架在Python代碼中配置URL,跨站腳本以及跨站請求偽造攻擊網站的原理及保護方法,等等。
《Python性能分析與優化》
【Python 2.X】
全面掌握Python代碼性能分析和優化方法
消除性能瓶頸,迅速改善程序性能
本書首先介紹什麼是性能分析,性能分析如何在項目開發周期中發揮作用,以及通過在項目中進行性能分析實踐能夠取得的效果。
緊接著介紹分析性能所需的核心工具(性能分析器和可視化性能分析器)。
然後介紹一系列性能優化技術,最後一章會介紹一個具有實際意義的優化案例。
《精通Python設計模式》
【Python 3.X】
用現實例子展示各模式的關鍵特性
16種基本設計模式,輕松解決軟體設計常見問題
本書分三部分,共16章介紹一些常用的設計模式。
第一部分介紹處理對象創建的設計模式,包括工廠模式、建造者模式、原型模式;
第二部分介紹處理一個系統中不同實體(類、對象等)之間關系的設計模式,包括外觀模式、享元模式等;
第三部分介紹處理系統實體之間通信的設計模式,包括責任鏈模式、觀察者模式等。
《Flask Web開發:基於Python的Web應用開發實戰》
【Python 2.7和3.3】
從安裝與環境設置講起,一步一步搭建伺服器端Web應用
全流程講解Web應用開發,給出最佳實踐
本書共分三部分,全面介紹如何基於Python微框架Flask進行Web開發。
第一部分是Flask簡介,介紹使用Flask框架及擴展開發Web程序的必備基礎知識。
第二部分則給出一個實例,真正帶領大家一步步開發完整的博客和社交應用Flasky,從而將前述知識融會貫通,付諸實踐。
第三部分介紹了發布應用之前必須考慮的事項,如單元測試策略、性能分析技術、Flask程序的部署方式等。
《Python Web開發:測試驅動方法》
【(Django、Selenium)相關部分使用Python 3.3講解】
亞馬遜4.8星評好書
實戰式TDD開發指南,使用Django等流行框架開發現代Web應用!
學習Django、Selenium、Git、jQuery和Mock,以及其他當前流行Web開發技術
「這本書很棒、很有趣,所講的全都是重點知識。如果有人想用Python做測試、學習Django或者想使用Selenium,我極力推薦這本書。要使開發者保持頭腦清醒,測試可謂至關重要。Harry完成了一項不可思議的工作,他不僅吸引了我們對測試的關注,而且還探索了切實可行的測試實踐方案。」
——Michael Foord,Python核心開發者,unittest維護者
《數據科學入門》
【Python 2.7】
Google數據科學家、軟體工程師Joel Grus作品
用Python從零開始講解數據科學的重量級讀本
數據科學、機器學習、模式識別領域必備
本書從零開始講解數據科學。
具體內容包括Python簡介,可視化數據,線性代數,統計,概率,假設與推斷,梯度下降法,如何獲取數據,k近鄰法,樸素貝葉斯演算法等。
作者藉助大量具體例子以及數據挖掘、統計學、機器學習等領域的重要概念,通過講解基礎數據科學工具和演算法實現,帶你快速跨入數據科學大門。
書中含大量數據科學領域的庫、框架、模塊和工具包。
《機器學習實戰》
【Python 2.7】
最暢銷機器學習圖書
介紹並實現機器學習的主流演算法
面向日常任務的高效實戰內容
全書通過精心編排的實例,切入日常工作任務,摒棄學術化語言,利用高效的可復用Python代碼來闡釋如何處理統計數據,進行數據分析及可視化。
通過各種實例,讀者可從中學會機器學習的核心演算法,並能將其運用於一些策略性任務中,如分類、預測、推薦。另外,還可用它們來實現一些更高級的功能,如匯總和簡化等。
《機器學習系統設計》
【Python 2.7及以上】
微軟Bing核心團隊成員推出
聚焦演算法編寫和編程方式
結合大量實例學會解決實際問題
本書將向讀者展示如何從原始數據中發現模式,首先從Python與機器學習的關系講起,再介紹一些庫,然後就開始基於數據集進行比較正式的項目開發了,涉及建模、推薦及改進,以及聲音與圖像處理。通過流行的開源庫,我們可以掌握如何高效處理文本、圖片和聲音。同時,讀者也能掌握如何評估、比較和選擇適用的機器學習技術。
《Python數據處理》
【Python 2.7】
將數據處理過程自動化!
全面掌握用Python進行爬蟲抓取以及數據清洗與分析的方法,輕松實現高效數據處理!
本書採用基於項目的方法,介紹用Python完成數據獲取、數據清洗、數據探索、數據呈現、數據規模化和自動化的過程。
主要內容包括:Python基礎知識,如何從CSV、Excel、XML、JSON和PDF文件中提取數據,如何獲取與存儲數據,各種數據清洗與分析技術,數據可視化方法,如何從網站和API中提取數據。
《Python數據分析基礎教程:NumPy學習指南(第2版)》
【Python 2.7】
NumPy中文入門教程,Python數據分析首選
從最基礎的知識講起,手把手帶你進入大數據挖掘領域
囊括大量具有啟發性與實用價值的實戰案例
本書從NumPy安裝講起,逐漸過渡到數組對象、常用函數、矩陣運算、線性代數、金融函數、窗函數、質量控制等內容,致力於向初中級Python編程人員全面講述NumPy及其使用。
另外,通過書中豐富的示例,你還將學會Matplotlib繪圖,並結合使用其他Python科學計算庫(如SciPy和Scikits),讓工作更有成效,讓代碼更加簡潔而高效。
《Python數據挖掘入門與實踐》
【Python 3.4】
全面釋放Python的數據分析能力
掌握大數據時代核心技術,輕松入門數據挖掘技術並將其應用於實際項目
本書使用簡單易學且擁有豐富第三方庫和良好社區氛圍的Python語言,由淺入深,以真實數據作為研究對象,真刀實槍地向讀者介紹Python數據挖掘的實現方法。通過本書,讀者將邁入數據挖掘的殿堂,透徹理解數據挖掘基礎知識,掌握解決數據挖掘實際問題的最佳實踐!
《Python科學計算基礎教程》
【Python 2.7及以上】
精彩案例展示Numpy等科學計算模塊的強大功能和廣泛應用
剖析Python關於並行與大數據計算的方法
總結科學計算的任務、難點以及最佳實踐經驗
本書是將Python用於科學計算的實用指南,既介紹了相關的基礎知識,又提供了豐富的精彩案例,並為讀者總結了最佳實踐經驗。
其主要內容包括:科學計算的基本概念與選擇Python的理由,科學工作流和科學計算的結構,科學項目相關數據的各個方面,用於科學計算的API和工具包,如何利用Python的NumPy和SciPy包完成數值計算,用Python做符號計算,數據分析與可視化,並行與大規模計算,等等。
《Python數據分析實戰》
【Python 2.X】
了解Python在信息處理、管理和檢索方面的強大功能
學會如何利用Python及其衍生工具處理、分析數據
三個真實Python數據分析案例,將理論付諸實踐
《Python數據分析實戰》展示了如何利用Python 語言的強大功能,以最小的編程代價進行數據的提取、處理和分析,主要內容包括:數據分析和Python 的基本介紹,NumPy 庫,pandas 庫,如何使用pandas 讀寫和提取數據,用matplotlib 庫和scikit-learn 庫分別實現數據可視化和機器學習,以實例演示如何從原始數據獲得信息、D3 庫嵌入和手寫體數字的識別。
《Python網路數據採集》
【Python 3.X】
原書4.6星好評,一本書搞定數據採集
涵蓋數據抓取、數據挖掘和數據分析
提供詳細代碼示例,快速解決實際問題
本書介紹網路數據採集,並為採集新式網路中的各種數據類型提供了全面的指導。
第一部分重點介紹網路數據採集的基本原理:如何用Python從網路伺服器請求信息,如何對伺服器的響應進行基本處理,以及如何以自動化手段與網站進行交互。
第二部分介紹如何用網路爬蟲測試網站,自動化處理,以及如何通過更多的方式接入網路。
《Python計算機視覺編程》
【Python 2.6及以上】
亞馬遜計算機視覺類圖書No.1
詳細剖析多種計算機視覺工具
大量示例極易上手
本書是計算機視覺編程的權威實踐指南,通過Python語言講解了基礎理論與演算法,並通過大量示例細致分析了對象識別、基於內容的圖像搜索、光學字元識別、光流法、跟蹤、3D重建、立體成像、增強現實、姿態估計、全景創建、圖像分割、降噪、圖像分組等技術。