⑴ 數據挖掘十大演算法-
整理里一晚上的數據挖掘演算法,其中主要引自wiki和一些論壇。發布到上作為知識共享,但是發現Latex的公式轉碼到網頁的時候出現了丟失,暫時沒找到解決方法,有空再回來填坑了。
——編者按
一、 C4.5
C4.5演算法是由Ross Quinlan開發的用於產生決策樹的演算法[1],該演算法是對Ross Quinlan之前開發的ID3演算法的一個擴展。C4.5演算法主要應用於統計分類中,主要是通過分析數據的信息熵建立和修剪決策樹。
1.1 決策樹的建立規則
在樹的每個節點處,C4.5選擇最有效地方式對樣本集進行分裂,分裂規則是分析所有屬性的歸一化的信息增益率,選擇其中增益率最高的屬性作為分裂依據,然後在各個分裂出的子集上進行遞歸操作。
依據屬性A對數據集D進行分類的信息熵可以定義如下:
劃分前後的信息增益可以表示為:
那麼,歸一化的信息增益率可以表示為:
1.2 決策樹的修剪方法
C4.5採用的剪枝方法是悲觀剪枝法(Pessimistic Error Pruning,PEP),根據樣本集計運算元樹與葉子的經驗錯誤率,在滿足替換標准時,使用葉子節點替換子樹。
不妨用K表示訓練數據集D中分類到某一個葉子節點的樣本數,其中其中錯誤分類的個數為J,由於用估計該節點的樣本錯誤率存在一定的樣本誤差,因此用表示修正後的樣本錯誤率。那麼,對於決策樹的一個子樹S而言,設其葉子數目為L(S),則子樹S的錯誤分類數為:
設數據集的樣本總數為Num,則標准錯誤可以表示為:
那麼,用表示新葉子的錯誤分類數,則選擇使用新葉子節點替換子樹S的判據可以表示為:
二、KNN
最近鄰域演算法(k-nearest neighbor classification, KNN)[2]是一種用於分類和回歸的非參數統計方法。KNN演算法採用向量空間模型來分類,主要思路是相同類別的案例彼此之間的相似度高,從而可以藉由計算未知樣本與已知類別案例之間的相似度,來實現分類目標。KNN是一種基於局部近似和的實例的學習方法,是目前最簡單的機器學習演算法之一。
在分類問題中,KNN的輸出是一個分類族群,它的對象的分類是由其鄰居的「多數表決」確定的,k個最近鄰居(k為正整數,通常較小)中最常見的分類決定了賦予該對象的類別。若k = 1,則該對象的類別直接由最近的一個節點賦予。在回歸問題中,KNN的輸出是其周圍k個鄰居的平均值。無論是分類還是回歸,衡量鄰居的權重都非常重要,目標是要使較近鄰居的權重比較遠鄰居的權重大,例如,一種常見的加權方案是給每個鄰居權重賦值為1/d,其中d是到鄰居的距離。這也就自然地導致了KNN演算法對於數據的局部結構過於敏感。
三、Naive Bayes
在機器學習的眾多分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)[3]。樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。
在假設各個屬性相互獨立的條件下,NBC模型的分類公式可以簡單地表示為:
但是實際上問題模型的屬性之間往往是非獨立的,這給NBC模型的分類准確度帶來了一定影響。在屬性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型;而在屬性相關性較小時,NBC模型的性能最為良好。
四、CART
CART演算法(Classification And Regression Tree)[4]是一種二分遞歸的決策樹,把當前樣本劃分為兩個子樣本,使得生成的每個非葉子結點都有兩個分支,因此CART演算法生成的決策樹是結構簡潔的二叉樹。由於CART演算法構成的是一個二叉樹,它在每一步的決策時只能是「是」或者「否」,即使一個feature有多個取值,也是把數據分為兩部分。在CART演算法中主要分為兩個步驟:將樣本遞歸劃分進行建樹過程;用驗證數據進行剪枝。
五、K-means
k-平均演算法(k-means clustering)[5]是源於信號處理中的一種向量量化方法,現在則更多地作為一種聚類分析方法流行於數據挖掘領域。k-means的聚類目標是:把n個點(可以是樣本的一次觀察或一個實例)劃分到k個聚類中,使得每個點都屬於離他最近的均值(此即聚類中心)對應的聚類。
5.1 k-means的初始化方法
通常使用的初始化方法有Forgy和隨機劃分(Random Partition)方法。Forgy方法隨機地從數據集中選擇k個觀測作為初始的均值點;而隨機劃分方法則隨機地為每一觀測指定聚類,然後執行「更新」步驟,即計算隨機分配的各聚類的圖心,作為初始的均值點。Forgy方法易於使得初始均值點散開,隨機劃分方法則把均值點都放到靠近數據集中心的地方;隨機劃分方法一般更適用於k-調和均值和模糊k-均值演算法。對於期望-最大化(EM)演算法和標准k-means演算法,Forgy方法作為初始化方法的表現會更好一些。
5.2 k-means的標准演算法
k-means的標准演算法主要包括分配(Assignment)和更新(Update),在初始化得出k個均值點後,演算法將會在這兩個步驟中交替執行。
分配(Assignment):將每個觀測分配到聚類中,使得組內平方和達到最小。
更新(Update):對於上一步得到的每一個聚類,以聚類中觀測值的圖心,作為新的均值點。
六、Apriori
Apriori演算法[6]是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法,其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。Apriori採用自底向上的處理方法,每次只擴展一個對象加入候選集,並且使用數據集對候選集進行檢驗,當不再產生匹配條件的擴展對象時,演算法終止。
Apriori的缺點在於生成候選集的過程中,演算法總是嘗試掃描整個數據集並盡可能多地添加擴展對象,導致計算效率較低;其本質上採用的是寬度優先的遍歷方式,理論上需要遍歷次才可以確定任意的最大子集S。
七、SVM
支持向量機(Support Vector Machine, SVM)[7]是在分類與回歸分析中分析數據的監督式學習模型與相關的學習演算法。給定一組訓練實例,每個訓練實例被標記為屬於兩個類別中的一個或另一個,SVM訓練演算法創建一個將新的實例分配給兩個類別之一的模型,使其成為非概率二元線性分類器。SVM模型是將實例表示為空間中的點,這樣映射就使得單獨類別的實例被盡可能寬的明顯的間隔分開。然後,將新的實例映射到同一空間,並基於它們落在間隔的哪一側來預測所屬類別。
除了進行線性分類之外,SVM還可以使用所謂的核技巧有效地進行非線性分類,將其輸入隱式映射到高維特徵空間中,即支持向量機在高維或無限維空間中構造超平面或超平面集合,用於分類、回歸或其他任務。直觀來說,分類邊界距離最近的訓練數據點越遠越好,因為這樣可以縮小分類器的泛化誤差。
八、EM
最大期望演算法(Expectation–Maximization Algorithm, EM)[7]是從概率模型中尋找參數最大似然估計的一種演算法。其中概率模型依賴於無法觀測的隱性變數。最大期望演算法經常用在機器學習和計算機視覺的數據聚類(Data Clustering)領域。最大期望演算法經過兩個步驟交替進行計算,第一步是計算期望(E),利用對隱藏變數的現有估計值,計算其最大似然估計值;第二步是最大化(M),最大化在E步上求得的最大似然值來計算參數的值。M步上找到的參數估計值被用於下一個E步計算中,這個過程不斷交替進行。
九、PageRank
PageRank演算法設計初衷是根據網站的外部鏈接和內部鏈接的數量和質量對網站的價值進行衡量。PageRank將每個到網頁的鏈接作為對該頁面的一次投票,被鏈接的越多,就意味著被其他網站投票越多。
演算法假設上網者將會不斷點網頁上的鏈接,當遇到了一個沒有任何鏈接出頁面的網頁,這時候上網者會隨機轉到另外的網頁開始瀏覽。設置在任意時刻,用戶到達某頁面後並繼續向後瀏覽的概率,該數值是根據上網者使用瀏覽器書簽的平均頻率估算而得。PageRank值可以表示為:
其中,是被研究的頁面集合,N表示頁面總數,是鏈接入頁面的集合,是從頁面鏈接處的集合。
PageRank演算法的主要缺點是的主要缺點是舊的頁面等級會比新頁面高。因為即使是非常好的新頁面也不會有很多外鏈,除非它是某個站點的子站點。
十、AdaBoost
AdaBoost方法[10]是一種迭代演算法,在每一輪中加入一個新的弱分類器,直到達到某個預定的足夠小的錯誤率。每一個訓練樣本都被賦予一個權重,表明它被某個分類器選入訓練集的概率。如果某個樣本點已經被准確地分類,那麼在構造下一個訓練集中,它被選中的概率就被降低;相反,如果某個樣本點沒有被准確地分類,那麼它的權重就得到提高。通過這樣的方式,AdaBoost方法能「聚焦於」那些較難分的樣本上。在具體實現上,最初令每個樣本的權重都相等,對於第k次迭代操作,我們就根據這些權重來選取樣本點,進而訓練分類器Ck。然後就根據這個分類器,來提高被它分錯的的樣本的權重,並降低被正確分類的樣本權重。然後,權重更新過的樣本集被用於訓練下一個分類器Ck[,並且如此迭代地進行下去。
AdaBoost方法的自適應在於:前一個分類器分錯的樣本會被用來訓練下一個分類器。AdaBoost方法對於雜訊數據和異常數據很敏感。但在一些問題中,AdaBoost方法相對於大多數其它學習演算法而言,不會很容易出現過擬合現象。AdaBoost方法中使用的分類器可能很弱(比如出現很大錯誤率),但只要它的分類效果比隨機好一點(比如兩類問題分類錯誤率略小於0.5),就能夠改善最終得到的模型。而錯誤率高於隨機分類器的弱分類器也是有用的,因為在最終得到的多個分類器的線性組合中,可以給它們賦予負系數,同樣也能提升分類效果。
引用
[1] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.
[2] Altman, N. S. An introction to kernel and nearest-neighbor nonparametric regression. The American Statistician. 1992, 46 (3): 175–185. doi:10.1080/00031305.1992.10475879
[3] Webb, G. I.; Boughton, J.; Wang, Z. Not So Naive Bayes: Aggregating One-Dependence Estimators. Machine Learning (Springer). 2005, 58 (1): 5–24. doi:10.1007/s10994-005-4258-6
[4] decisiontrees.net Interactive Tutorial
[5] Hamerly, G. and Elkan, C. Alternatives to the k-means algorithm that find better clusterings (PDF). Proceedings of the eleventh international conference on Information and knowledge management (CIKM). 2002
[6] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in large databases. Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pages 487-499, Santiago, Chile, September 1994.
[7] Cortes, C.; Vapnik, V. Support-vector networks. Machine Learning. 1995, 20 (3): 273–297. doi:10.1007/BF00994018
[8] Arthur Dempster, Nan Laird, and Donald Rubin. "Maximum likelihood from incomplete data via the EM algorithm". Journal of the Royal Statistical Society, Series B, 39 (1):1–38, 1977
[9] Susan Moskwa. PageRank Distribution Removed From WMT. [October 16, 2009]
[10] Freund, Yoav; Schapire, Robert E. A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. 1995. CiteSeerX: 10.1.1.56.9855
⑵ matlab智能演算法30個案例分析中第29哥案例的代碼為什麼一直出錯
在模擬測試階段,原代碼是:
[Predict_1,error_1] = svmpredict(tn_train,pn_train,model);這個代碼運行出來後,predict_1和error_1都是空矩陣,圖自然出錯。
需要改為:[Predict_1,error_1,decision_values1] = svmpredict(tn_train,pn_train,model)
⑶ A*演算法——啟發式路徑搜索
A*是一種路徑搜索演算法,比如為游戲中的角色規劃行動路徑。
A* 演算法的輸入是, 起點(初始狀態) 和 終點(目標狀態) ,以及兩點間 所有可能的路徑 ,以及涉及到的 中間節點(中間狀態) ,每兩個節點間的路徑的 代價 。
一般還需要某種 啟發函數 ,即從任意節點到終點的近似代價,啟發函數能夠非常快速的估算出該代價值。
輸出是從 起點到終點的最優路徑 ,即代價最小。同時,好的啟發函數將使得這一搜索運算盡可能高效,即搜索盡量少的節點/可能的路徑。
f(n)=g(n)+h(n)
f(n) 是從初始狀態經由狀態n到目標狀態的代價估計
g(n) 是在狀態空間中從初始狀態到狀態n的實際代價
h(n) 是從狀態n到目標狀態的最佳路徑的估計代價
A*演算法是從起點開始,檢查所有可能的擴展點(它的相鄰點),對每個點計算g+h得到f,在所有可能的擴展點中,選擇f最小的那個點進行擴展,即計算該點的所有可能擴展點的f值,並將這些新的擴展點添加到擴展點列表(open list)。當然,忽略已經在列表中的點、已經考察過的點。
不斷從open list中選擇f值最小的點進行擴展,直到到達目標點(成功找到最優路徑),或者節點用完,路徑搜索失敗。
演算法步驟:
參考
A* 演算法步驟的詳細說明請參考 A*尋路演算法 ,它包含圖文案例清楚的解釋了A*演算法計算步驟的一些細節,本文不再詳細展開。
看一下上面參考文檔中的案例圖,最終搜索完成時,藍色邊框是close list中的節點,綠色邊框是open list中的節點,每個方格中三個數字,左上是f(=g+h),左下是g(已經過路徑的代價),右下是h(估計未經過路徑的代價)。藍色方格始終沿著f值最小的方向搜索前進,避免了對一些不好的路徑(f值較大)的搜索。(圖片來自 A*尋路演算法 )
現在我們可以理解,A*演算法中啟發函數是最重要的,它有幾種情況:
1) h(n) = 0
一種極端情況,如果h(n)是0,則只有g(n)起作用,此時A*演變成Dijkstra演算法,這保證能找到最短路徑。但效率不高,因為得不到啟發。
2) h(n) < 真實代價
如果h(n)經常都比從n移動到目標的實際代價小(或者相等),則A*保證能找到一條最短路徑。h(n)越小,A*擴展的結點越多,運行就得越慢。越接近Dijkstra演算法。
3) h(n) = 真實代價
如果h(n)精確地等於從n移動到目標的代價,則A*將會僅僅尋找最佳路徑而不擴展別的任何結點,這會運行得非常快。盡管這不可能在所有情況下發生,你仍可以在一些特殊情況下讓它們精確地相等(譯者:指讓h(n)精確地等於實際值)。只要提供完美的信息,A*會運行得很完美,認識這一點很好。
4) h(n) > 真實代價
如果h(n)有時比從n移動到目標的實際代價高,則A*不能保證找到一條最短路徑,但它運行得更快。
5) h(n) >> 真實代價
另一種極端情況,如果h(n)比g(n)大很多,則只有h(n)起作用,A*演變成BFS演算法。
關於啟發函數h、Dijkstra演算法、BFS(最佳優先搜索)演算法、路徑規劃情況下啟發函數的選擇、演算法實現時List的數據結構、演算法變種等等更多問題,請參考: A*演算法