導航:首頁 > 源碼編譯 > a演算法和spfa

a演算法和spfa

發布時間:2023-06-12 05:57:33

A. 最短路徑的解決方法

用於解決最短路徑問題的演算法被稱做「最短路徑演算法」, 有時被簡稱作「路徑演算法」。 最常用的路徑演算法有:
Dijkstra演算法
SPFA演算法Bellman-Ford演算法
Floyd演算法Floyd-Warshall演算法
Johnson演算法
A*演算法
所謂單源最短路徑問題是指:已知圖G=(V,E),我們希望找出從某給定的源結點S∈V到V中的每個結點的最短路徑。
首先,我們可以發現有這樣一個事實:如果P是G中從vs到vj的最短路,vi是P中的一個點,那麼,從vs沿P到vi的路是從vs到vi的最短路。

B. 求最短路徑演算法有哪幾種

Dijkstra演算法,A*演算法和D*演算法

Dijkstra演算法是典型最短路演算法,用於計算一個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。Dijkstra演算法能得出最短路徑的最優解,但由於它遍歷計算的節點很多,所以效率低。

Dijkstra演算法是很有代表性的最短路演算法,在很多專業課程中都作為基本內容有詳細的介紹,如數據結構,圖論,運籌學等等。

Dijkstra一般的表述通常有兩種方式,一種用永久和臨時標號方式,一種是用OPEN, CLOSE表方式,Drew為了和下面要介紹的 A* 演算法和 D* 演算法表述一致,這里均採用OPEN,CLOSE表的方式

C. python多個起點不交叉最短路徑

1 針對給定的多個起點和終點,如果要求起點之間不交叉,那麼存在最短運禪路徑。

2 因為起點之間不交叉,可以將問題簡化為多個單起點單終點的問題,可以使用 Dijkstra 演算法或者 A* 演算法等察汪求解最短路徑的演算法。

3 如果需要考慮多個起點之間的交叉情況,可以考慮使用遺傳演算法等旁沒塵啟發式演算法,不過這樣的演算法復雜度較高,需要更長的計算時間。

D. 求A到B之間的最短路徑,怎麼獲取

問題:從某頂點出發,沿圖的邊到達另一頂點所經過的路徑中,各邊上權值之和最小的一條路徑——最短路徑。解決最短路的問題有以下演算法,Dijkstra演算法,Bellman-Ford演算法,Floyd演算法和SPFA演算法,另外還有著名的啟發式搜索演算法A*,不過A*准備單獨出一篇,其中Floyd演算法可以求解任意兩點間的最短路徑的長度。任意一個最短路演算法都是基於這樣一個事實:從任意節點A到任意節點B的最短路徑不外乎2種可能,1是直接從A到B,2是從A經過若干個節點到B。
(1) 迪傑斯特拉(Dijkstra)演算法按路徑長度(看下面表格的最後一行,就是next點)遞增次序產生最短路徑。先把V分成兩組:
S:已求出最短路徑的頂點的集合
V-S=T:尚未確定最短路徑的頂點集合
將T中頂點按最短路徑遞增的次序加入到S中,依據:可以證明V0到T中頂點Vk的最短路徑,或是從V0到Vk的直接路徑的權值或是從V0經S中頂點到Vk的路徑權值之和(反證法可證,說實話,真不明白哦)。
(2) 求最短路徑步驟
初使時令 S={V0},T={其餘頂點},T中頂點對應的距離值, 若存在<V0,Vi>,為<V0,Vi>弧上的權值(和SPFA初始化方式不同),若不存在<V0,Vi>,為Inf。
從T中選取一個其距離值為最小的頂點W(貪心體現在此處),加入S(注意不是直接從S集合中選取,理解這個對於理解vis數組的作用至關重要),對T中頂點的距離值進行修改:若加進W作中間頂點,從V0到Vi的距離值比不加W的路徑要短,則修改此距離值(上面兩個並列for循環,使用最小點更新)。
重復上述步驟,直到S中包含所有頂點,即S=V為止(說明最外層是除起點外的遍歷)。

E. 圖遍歷演算法之最短路徑Dijkstra演算法

最短路徑問題是圖論研究中一個經典演算法問題,旨在尋找圖中兩節點或單個節點到其他節點之間的最短路徑。根據問題的不同,演算法的具體形式包括:

常用的最短路徑演算法包括:Dijkstra演算法,A 演算法,Bellman-Ford演算法,SPFA演算法(Bellman-Ford演算法的改進版本),Floyd-Warshall演算法,Johnson演算法以及Bi-direction BFS演算法。本文將重點介紹Dijkstra演算法的原理以及實現。

Dijkstra演算法,翻譯作戴克斯特拉演算法或迪傑斯特拉演算法,於1956年由荷蘭計算機科學家艾茲赫爾.戴克斯特拉提出,用於解決賦權有向圖的 單源最短路徑問題 。所謂單源最短路徑問題是指確定起點,尋找該節點到圖中任意節點的最短路徑,演算法可用於尋找兩個城市中的最短路徑或是解決著名的旅行商問題。

問題描述 :在無向圖 中, 為圖節點的集合, 為節點之間連線邊的集合。假設每條邊 的權重為 ,找到由頂點 到其餘各個節點的最短路徑(單源最短路徑)。

為帶權無向圖,圖中頂點 分為兩組,第一組為已求出最短路徑的頂點集合(用 表示)。初始時 只有源點,當求得一條最短路徑時,便將新增頂點添加進 ,直到所有頂點加入 中,演算法結束。第二組為未確定最短路徑頂點集合(用 表示),隨著 中頂點增加, 中頂點逐漸減少。

以下圖為例,對Dijkstra演算法的工作流程進行演示(以頂點 為起點):

註:
01) 是已計算出最短路徑的頂點集合;
02) 是未計算出最短路徑的頂點集合;
03) 表示頂點 到頂點 的最短距離為3
第1步 :選取頂點 添加進


第2步 :選取頂點 添加進 ,更新 中頂點最短距離




第3步 :選取頂點 添加進 ,更新 中頂點最短距離




第4步 :選取頂點 添加進 ,更新 中頂點最短距離





第5步 :選取頂點 添加進 ,更新 中頂點最短距離



第6步 :選取頂點 添加進 ,更新 中頂點最短距離



第7步 :選取頂點 添加進 ,更新 中頂點最短距離

示例:node編號1-7分別代表A,B,C,D,E,F,G

(s.paths <- shortest.paths(g, algorithm = "dijkstra"))輸出結果:

(s.paths <- shortest.paths(g,4, algorithm = "dijkstra"))輸出結果:

示例:

找到D(4)到G(7)的最短路徑:

[1] 維基網路,最短路徑問題: https://zh.wikipedia.org/wiki/%E6%9C%80%E7%9F%AD%E8%B7%AF%E9%97%AE%E9%A2%98 ;
[2]CSDN,Dijkstra演算法原理: https://blog.csdn.net/yalishadaa/article/details/55827681 ;
[3]RDocumentation: https://www.rdocumentation.org/packages/RNeo4j/versions/1.6.4/topics/dijkstra ;
[4]RDocumentation: https://www.rdocumentation.org/packages/igraph/versions/0.1.1/topics/shortest.paths ;
[5]Pypi: https://pypi.org/project/Dijkstar/

閱讀全文

與a演算法和spfa相關的資料

熱點內容
dvd光碟存儲漢子演算法 瀏覽:758
蘋果郵件無法連接伺服器地址 瀏覽:963
phpffmpeg轉碼 瀏覽:672
長沙好玩的解壓項目 瀏覽:145
專屬學情分析報告是什麼app 瀏覽:564
php工程部署 瀏覽:833
android全屏透明 瀏覽:737
阿里雲伺服器已開通怎麼辦 瀏覽:803
光遇為什麼登錄時伺服器已滿 瀏覽:302
PDF分析 瀏覽:486
h3c光纖全工半全工設置命令 瀏覽:143
公司法pdf下載 瀏覽:383
linuxmarkdown 瀏覽:350
華為手機怎麼多選文件夾 瀏覽:683
如何取消命令方塊指令 瀏覽:350
風翼app為什麼進不去了 瀏覽:779
im4java壓縮圖片 瀏覽:362
數據查詢網站源碼 瀏覽:151
伊克塞爾文檔怎麼進行加密 瀏覽:893
app轉賬是什麼 瀏覽:163