導航:首頁 > 源碼編譯 > 人工智慧12種演算法

人工智慧12種演算法

發布時間:2023-06-13 14:34:32

㈠ 人工智慧十大演算法

人工智慧十大演算法如下

線性回歸(Linear Regression)可能是最流行的機器學習演算法。線性回歸就是要找一條直線,並且讓這條直線盡可能地擬合散點圖中的數據點。它試圖通過將直線方程與該數據擬合來表示自變數(x值)和數值結果(y值)。然後就可以用這條線來預測未來的值!

邏輯回歸(Logistic regression)與線性回歸類似,但它是用於輸出為二進制的情況(即,當結果只能有兩個可能的值)。對最終輸出的預測是一個非線性的S型函數,稱為logistic function, g()。

決策樹(Decision Trees)可用於回歸和分類任務。

樸素貝葉斯(Naive Bayes)是基於貝葉斯定理。它測量每個類的概率,每個類的條件概率給出x的值。這個演算法用於分類問題,得到一個二進制「是/非」的結果。看看下面的方程式。

支持向量機(Support Vector Machine,SVM)是一種用於分類問題的監督演算法。支持向量機試圖在數據點之間繪制兩條線,它們之間的邊距最大。為此,我們將數據項繪制為n維空間中的點,其中,n是輸入特徵的數量。在此基礎上,支持向量機找到一個最優邊界,稱為超平面(Hyperplane),它通過類標簽將可能的輸出進行最佳分離。

K-最近鄰演算法(K-Nearest Neighbors,KNN)非常簡單。KNN通過在整個訓練集中搜索K個最相似的實例,即K個鄰居,並為所有這些K個實例分配一個公共輸出變數,來對對象進行分類。

K-均值(K-means)是通過對數據集進行分類來聚類的。例如,這個演算法可用於根據購買歷史將用戶分組。它在數據集中找到K個聚類。K-均值用於無監督學習,因此,我們只需使用訓練數據X,以及我們想要識別的聚類數量K。

隨機森林(Random Forest)是一種非常流行的集成機器學習演算法。這個演算法的基本思想是,許多人的意見要比個人的意見更准確。在隨機森林中,我們使用決策樹集成(參見決策樹)。

由於我們今天能夠捕獲的數據量之大,機器學習問題變得更加復雜。這就意味著訓練極其緩慢,而且很難找到一個好的解決方案。這一問題,通常被稱為「維數災難」(Curse of dimensionality)。

人工神經網路(Artificial Neural Networks,ANN)可以處理大型復雜的機器學習任務。神經網路本質上是一組帶有權值的邊和節點組成的相互連接的層,稱為神經元。在輸入層和輸出層之間,我們可以插入多個隱藏層。人工神經網路使用了兩個隱藏層。除此之外,還需要處理深度學習。

㈡ 人工智慧演算法有哪些

人工智慧演算法有:決策樹、隨機森林演算法、邏輯回歸、SVM、樸素貝葉斯、K最近鄰演算法、K均值演算法、Adaboost演算法、神經網路、馬爾可夫。

㈢ 最常見的人工智慧演算法都有哪些

神經網路演算法、蟻群演算法、混合蛙跳演算法、蜂群演算法。

㈣ 人工智慧中的演算法種類

SVM演算法,粒子群演算法,免疫演算法,種類太多了,各種演算法還有改進版,比如說遺傳神經網路。從某本書上介紹,各種演算法性能、效力等各不同,應依據具體問題選擇演算法。

㈤ 最常見的人工智慧演算法都有哪些它們在求解過程中與傳統演算法相比,有什麼特點

很多很多,早期的演算法特點是通過規則方式建立知識庫,指導演算法完成計算;當前演算法的特點是不編程高速計算機如何計算,而是讓計算機自己學習,這些演算法可以看一下163上斯坦福《機器學習》的公開課。

㈥ 人工智慧方面有哪些演算法

模式識別需要非常好的概率論,數理統計;另外會用到少量矩陣代數,隨機過程和高數中的一些運算,當然是比較基礎的;如果要深入的話恐怕需要學泛函,但是一般情況下不需要達到這種深度。神經網路,遺傳演算法等智能演算法在模式識別有非常重要的應用,但是一般不需要學習計算機學科的人工智慧,我們控制有一個交叉學科叫做智能控制是講這些的,智能控制不需要什麼基礎,有中學數學的集合和對空間有一點點的了解就足夠了,模糊數學的基礎是包含在這門學科里的。

㈦ 人工智慧演算法

演算法就分很多類,這里拿「合一」來作為介紹,為了應用推理規則(比如取式假言推理),推理系統必須能夠判斷兩個表達式何時相同,也就是這兩個表達式何時匹配。在命題演算中,這是顯而易見的:兩個表達式是匹配的當且僅當它們在語句構成上相同。在謂詞演算中,表達式中變數的存在使匹配兩個語句的過程變得復雜。全稱例化允許用定義域中的項來替換全稱量化變數。這需要一個決策處理來判斷是否可以使變數替換產生的兩個或更多個表達式相同〈通常是為了應用推理規則)。合一是一種判斷什麼樣的替換可以使產生的兩個謂詞演算表達式匹配的演算法。我們在上-一節中已經看到了這個過程,VX( man(X)=mortal(X))中的×替換成了man( socrates)中的 soc-rates。合一和像假言推理這樣的推理規則允許我們對一系列邏輯斷言做出推理。為了做到這一點,必須把邏輯資料庫表示為合適的形式。這種形式的一個根本特徵是要求所有的變數都是全稱量化的。這樣便允許在計算替代時有完全的自由度。存在量化變數可以從資料庫語句中消除,方法是用使這個語句為真的常量來替代它們。如,可以把3× parent( X, tom)替代為表達式parent( bob, tom)或parent( mary , tom) ,假定在當前解釋下bob和 mary是tom的雙親。消除存在量化變數的處理會因這些替換的值可能依賴於表達式中的其他變數而變得復雜。

閱讀全文

與人工智慧12種演算法相關的資料

熱點內容
dvd光碟存儲漢子演算法 瀏覽:758
蘋果郵件無法連接伺服器地址 瀏覽:963
phpffmpeg轉碼 瀏覽:672
長沙好玩的解壓項目 瀏覽:145
專屬學情分析報告是什麼app 瀏覽:564
php工程部署 瀏覽:833
android全屏透明 瀏覽:737
阿里雲伺服器已開通怎麼辦 瀏覽:803
光遇為什麼登錄時伺服器已滿 瀏覽:302
PDF分析 瀏覽:486
h3c光纖全工半全工設置命令 瀏覽:143
公司法pdf下載 瀏覽:383
linuxmarkdown 瀏覽:350
華為手機怎麼多選文件夾 瀏覽:683
如何取消命令方塊指令 瀏覽:350
風翼app為什麼進不去了 瀏覽:779
im4java壓縮圖片 瀏覽:362
數據查詢網站源碼 瀏覽:151
伊克塞爾文檔怎麼進行加密 瀏覽:893
app轉賬是什麼 瀏覽:163