1. 詳解MD5 干什麼的 優點 缺點 原理
MD5演算法是一種非常優秀的加密演算法。
MD5加密演算法特點:靈活性、不可恢復性。
介紹MD5加密演算法基本情況MD5的全稱是Message-Digest Algorithm 5,在90年代初由MIT的計算機科學實驗室和RSA Data Security Inc發明,經MD2、MD3和MD4發展而來。
Message-Digest泛指位元組串(Message)的Hash變換,就是把一個任意長度的位元組串變換成一定長的大整數。請注意我使用了」位元組串」而不是」字元串」這個詞,是因為這種變換只與位元組的值有關,與字元集或編碼方式無關。
MD5將任意長度的」位元組串」變換成一個128bit的大整數,並且它是一個不可逆的字元串變換演算法,換句話說就是,即使你看到源程序和演算法描述,也無法將一個MD5的值變換回原始的字元串,從數學原理上說,是因為原始的字元串有無窮多個,這有點象不存在反函數的數學函數。
MD5的典型應用是對一段Message(位元組串)產生fingerprint(指紋),以防止被」篡改」。舉個例子,你將一段話寫在一個叫 readme.txt文件中,並對這個readme.txt產生一個MD5的值並記錄在案,然後你可以傳播這個文件給別人,別人如果修改了文件中的任何內容,你對這個文件重新計算MD5時就會發現。如果再有一個第三方的認證機構,用MD5還可以防止文件作者的」抵賴」,這就是所謂的數字簽名應用。
MD5還廣泛用於加密和解密技術上,在很多操作系統中,用戶的密碼是以MD5值(或類似的其它演算法)的方式保存的,用戶Login的時候,系統是把用戶輸入的密碼計算成MD5值,然後再去和系統中保存的MD5值進行比較,而系統並不」知道」用戶的密碼是什麼。
一些黑客破獲這種密碼的方法是一種被稱為」跑字典」的方法。有兩種方法得到字典,一種是日常搜集的用做密碼的字元串表,另一種是用排列組合方法生成的,先用MD5程序計算出這些字典項的MD5值,然後再用目標的MD5值在這個字典中檢索。
即使假設密碼的最大長度為8,同時密碼只能是字母和數字,共26+26+10=62個字元,排列組合出的字典的項數則是 P(62,1)+P(62,2)….+P(62,8),那也已經是一個很天文的數字了,存儲這個字典就需要TB級的磁碟組,而且這種方法還有一個前提,就是能獲得目標賬戶的密碼MD5值的情況下才可以。
在很多電子商務和社區應用中,管理用戶的Account是一種最常用的基本功能,盡管很多Application Server提供了這些基本組件,但很多應用開發者為了管理的更大的靈活性還是喜歡採用關系資料庫來管理用戶,懶惰的做法是用戶的密碼往往使用明文或簡單的變換後直接保存在資料庫中,因此這些用戶的密碼對軟體開發者或系統管理員來說可以說毫無保密可言,本文的目的是介紹MD5的java Bean的實現,同時給出用MD5來處理用戶的Account密碼的例子,這種方法使得管理員和程序設計者都無法看到用戶的密碼,盡管他們可以初始化它們。但重要的一點是對於用戶密碼設置習慣的保護。
2. md5是什麼演算法
MD5消息摘要演算法(英語:MD5 Message-Digest Algorithm),一種被廣泛使用的密碼散列函數,可以產生出一個128位(16位元組)的散列值,用於確保信息傳輸完整一致。MD5由美國密碼學家羅納德·李維斯特設計,於1992年公開,用以取代MD4演算法。這套演算法的程序在RFC 1321中被加以規范。
MD5碼可以使用「MD5」校驗工具取得,大學生數學建模競賽採用MD5碼主要是為了保證學生上傳文件的完整性,也是保證公平競賽的一個手段。
任何對文件內容的修改和打開重新保存都會使文件的MD5碼改變,但對文件重命名、復制粘貼不改變MD5碼。
(2)MD5演算法的結構特點擴展閱讀:
md5碼的特性:
不可逆性
這個特徵碼有如下特性,首先它不可逆,例如我有一段秘密的文字如:"My Secret Words",經演算法變換後得到MD5碼(),把這個碼告訴其他人,他們根據這個MD5碼是沒有系統的方法可以知道你原來的文字是什麼的。
離散性
其次,這個碼具有高度的離散性,也就是說,原信息的一點點變化就會導致MD5的巨大變化,例如"ABC" MD5()和"ABC "(多了一空格)MD5()差別非常大,而且之間沒有任何關系,也就是說產生的MD5碼是不可預測的。
碼位性
最後由於這個碼有128位那麼長,所以任意信息之間具有相同MD5碼的可能性非常之低,通常被認為是不可能的。
3. 常見密碼演算法原理
PBKDF2(Password-Based Key Derivation Function)是一個用來導出密鑰的函數,用來生成加密的密碼,增加破解的難度,類似bcrypt/scrypt等,可以用來進行密碼或者口令的加密存儲。主要是鹽值+pwd,經過多輪HMAC演算法的計算,產生的密文。
PBKDF2函數的定義
DK = PBKDF2(PRF, Password, Salt, c, dkLen)
• PRF是一個偽隨機函數,例如HASH_HMAC函數,它會輸出長度為hLen的結果。
• Password是用來生成密鑰的原文密碼。
• Salt是一個加密用的鹽值。
• c是進行重復計算的次數。
• dkLen是期望得到的密鑰的長度。
• DK是最後產生的密鑰。
https://segmentfault.com/a/1190000004261009
下面我們以Alice和Bob為例敘述Diffie-Hellman密鑰交換的原理。
1,Diffie-Hellman交換過程中涉及到的所有參與者定義一個組,在這個組中定義一個大質數p,底數g。
2,Diffie-Hellman密鑰交換是一個兩部分的過程,Alice和Bob都需要一個私有的數字a,b。
下面是DH交換的過程圖:
本圖片來自wiki
下面我們進行一個實例
1.愛麗絲與鮑伯協定使用p=23以及g=5.
2.愛麗絲選擇一個秘密整數a=6, 計算A = g^a mod p並發送給鮑伯。
A = 5^6 mod 23 = 8.
3.鮑伯選擇一個秘密整數b=15, 計算B = g^b mod p並發送給愛麗絲。
B = 5^15 mod 23 = 19.
4.愛麗絲計算s = B a mod p
19^6 mod 23 = 2.
5.鮑伯計算s = A b mod p
8^15 mod 23 = 2.
ECDH:
ECC演算法和DH結合使用,用於密鑰磋商,這個密鑰交換演算法稱為ECDH。交換雙方可以在不共享任何秘密的情況下協商出一個密鑰。ECC是建立在基於橢圓曲線的離散對數問題上的密碼體制,給定橢圓曲線上的一個點P,一個整數k,求解Q=kP很容易;給定一個點P、Q,知道Q=kP,求整數k確是一個難題。ECDH即建立在此數學難題之上。密鑰磋商過程:
假設密鑰交換雙方為Alice、Bob,其有共享曲線參數(橢圓曲線E、階N、基點G)。
來自 http://www.cnblogs.com/fishou/p/4206451.html
https://zh.wikipedia.org/wiki/SHA%E5%AE%B6%E6%97%8F
exponent1 INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (q-1)
coefficient INTEGER, -- (inverse of q) mod p
otherPrimeInfos OtherPrimeInfos OPTIONAL
}
-----END RSA PRIVATE KEY-----
while a RSA public key contains only the following data:
-----BEGIN RSA PUBLIC KEY-----
RSAPublicKey ::= SEQUENCE {
molus INTEGER, -- n
publicExponent INTEGER -- e
}
-----END RSA PUBLIC KEY-----
and this explains why the private key block is larger.
Note that a more standard format for non-RSA public keys is
-----BEGIN PUBLIC KEY-----
PublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
PublicKey BIT STRING
}
AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL
}
-----END PUBLIC KEY-----
More info here.
BTW, since you just posted a screenshot of the private key I strongly hope it was just for tests :)
密鑰的長度
C:\herong>java RsaKeyGenerator 128
p: 17902136406704537069
q: 17902136406704537077
m:
Molus:
Key size: 128
Public key:
Private key:
C:\herong>java RsaKeyGenerator 256
p:
q:
m: ...
Molus: ...
Key size: 256
Public key: ...
Private key: ...
https://security.stackexchange.com/questions/90169/rsa-public-key-and-private-key-lengths
https://stackoverflow.com/questions/2921508/trying-to-understand-java-rsa-key-size >
http://www.herongyang.com/Cryptography/RSA-BigInteger-Keys-Generated-by-RsaKeyGenerator-java.html
update() adds data to the Cipher』s internal buffer, then returns all currently completely encoded blocks. If there are any encoded blocks left over, they remain in the Cipher』s buffer until the next call, or a call to doFinal(). This means that if you call update() with a four byte array to encrypt, and the buffer size is eight bytes, you will not receive encoded data on the return (you』ll get a null instead). If your next call to update() passes five bytes of data in, you will get an 8 byte (the block size) array back, containing the four bytes passed in on the previous call, the first four bytes from the current call – the remaining byte from the current call is left in the Cipher』s buffer.
doFinal() on the other hand is much simpler: it encrypts the passed data, pads it out to the necessary length, and then returns it. The Cipher is essentially stateless.
來自 https://segmentfault.com/a/1190000006931511
DH演算法的中間人攻擊
在最初的描述中,迪菲-赫爾曼密鑰交換本身並沒有提供通訊雙方的身份驗證服務,因此它很容易受到中間人攻擊。 一個中間人在信道的中央進行兩次迪菲-赫爾曼密鑰交換,一次和Alice另一次和Bob,就能夠成功的向Alice假裝自己是Bob,反之亦然。而攻擊者可以解密(讀取和存儲)任何一個人的信息並重新加密信息,然後傳遞給另一個人。因此通常都需要一個能夠驗證通訊雙方身份的機制來防止這類攻擊。
優缺點:
1、 僅當需要時才生成密鑰,減小了將密鑰存儲很長一段時間而致使遭受攻擊的機會。
2、 除對全局參數的約定外,密鑰交換不需要事先存在的基礎結構。
然而,該技術也存在許多不足:
1、 沒有提供雙方身份的任何信息。
2、 它是計算密集性的,因此容易遭受阻塞性攻擊,即對手請求大量的密鑰。受攻擊者花費了相對多的計算資源來求解無用的冪系數而不是在做真正的工作。
3、 沒辦法防止重演攻擊。
4、 容易遭受中間人的攻擊。第三方C在和A通信時扮演B;和B通信時扮演A。A和B都與C協商了一個密鑰,然後C就可以監聽和傳遞通信量。中間人的攻擊按如下進行:
(1) B在給A的報文中發送他的公開密鑰。
(2) C截獲並解析該報文。C將B的公開密鑰保存下來並給A發送報文,該報文具有B的用戶ID但使用C的公開密鑰YC,仍按照好像是來自B的樣子被發送出去。A收到C的報文後,將YC和B的用戶ID存儲在一塊。類似地,C使用YC向B發送好像來自A的報文。
(3) B基於私有密鑰XB和YC計算秘密密鑰K1。A基於私有密鑰XA和YC計算秘密密鑰K2。C使用私有密鑰XC和YB計算K1,並使用XC和YA計算K2。
(4) 從現在開始,C就可以轉發A發給B的報文或轉發B發給A的報文,在途中根據需要修改它們的密文。使得A和B都不知道他們在和C共享通信。
4. 什麼是MD5
md5的全稱是message-digest algorithm 5(信息-摘要演算法),在90年代初由mit laboratory for computer science和rsa data security inc的ronald l. rivest開發出來,經md2、md3和md4發展而來。它的作用是讓大容量信息在用數字簽名軟體簽署私人密匙前被"壓縮"成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的大整數)。不管是md2、md4還是md5,它們都需要獲得一個隨機長度的信息並產生一個128位的信息摘要。雖然這些演算法的結構或多或少有些相似,但md2的設計與md4和md5完全不同,那是因為md2是為8位機器做過設計優化的,而md4和md5卻是面向32位的電腦。這三個演算法的描述和c語言源代碼在internet rfcs 1321中有詳細的描述(h++p://www.ietf.org/rfc/rfc1321.txt),這是一份最權威的文檔,由ronald l. rivest在1992年8月向ieft提交。
rivest在1989年開發出md2演算法。在這個演算法中,首先對信息進行數據補位,使信息的位元組長度是16的倍數。然後,以一個16位的檢驗和追加到信息末尾。並且根據這個新產生的信息計算出散列值。後來,rogier和chauvaud發現如果忽略了檢驗和將產生md2沖突。md2演算法的加密後結果是唯一的--既沒有重復。
為了加強演算法的安全性,rivest在1990年又開發出md4演算法。md4演算法同樣需要填補信息以確保信息的位元組長度加上448後能被512整除(信息位元組長度mod 512 = 448)。然後,一個以64位二進製表示的信息的最初長度被添加進來。信息被處理成512位damg?rd/merkle迭代結構的區塊,而且每個區塊要通過三個不同步驟的處理。den boer和bosselaers以及其他人很快的發現了攻擊md4版本中第一步和第三步的漏洞。dobbertin向大家演示了如何利用一部普通的個人電腦在幾分鍾內找到md4完整版本中的沖突(這個沖突實際上是一種漏洞,它將導致對不同的內容進行加密卻可能得到相同的加密後結果)。毫無疑問,md4就此被淘汰掉了。
盡管md4演算法在安全上有個這么大的漏洞,但它對在其後才被開發出來的好幾種信息安全加密演算法的出現卻有著不可忽視的引導作用。除了md5以外,其中比較有名的還有sha-1、ripe-md以及haval等。
一年以後,即1991年,rivest開發出技術上更為趨近成熟的md5演算法。它在md4的基礎上增加了"安全-帶子"(safety-belts)的概念。雖然md5比md4稍微慢一些,但卻更為安全。這個演算法很明顯的由四個和md4設計有少許不同的步驟組成。在md5演算法中,信息-摘要的大小和填充的必要條件與md4完全相同。den boer和bosselaers曾發現md5演算法中的假沖突(pseudo-collisions),但除此之外就沒有其他被發現的加密後結果了。
van oorschot和wiener曾經考慮過一個在散列中暴力搜尋沖突的函數(brute-force hash function),而且他們猜測一個被設計專門用來搜索md5沖突的機器(這台機器在1994年的製造成本大約是一百萬美元)可以平均每24天就找到一個沖突。但單從1991年到2001年這10年間,竟沒有出現替代md5演算法的md6或被叫做其他什麼名字的新演算法這一點,我們就可以看出這個瑕疵並沒有太多的影響md5的安全性。上面所有這些都不足以成為md5的在實際應用中的問題。並且,由於md5演算法的使用不需要支付任何版權費用的,所以在一般的情況下(非絕密應用領域。但即便是應用在絕密領域內,md5也不失為一種非常優秀的中間技術),md5怎麼都應該算得上是非常安全的了。
演算法的應用
md5的典型應用是對一段信息(message)產生信息摘要(message-digest),以防止被篡改。比如,在unix下有很多軟體在下載的時候都有一個文件名相同,文件擴展名為.md5的文件,在這個文件中通常只有一行文本,大致結構如:
md5 (tanajiya.tar.gz) =
這就是tanajiya.tar.gz文件的數字簽名。md5將整個文件當作一個大文本信息,通過其不可逆的字元串變換演算法,產生了這個唯一的md5信息摘要。如果在以後傳播這個文件的過程中,無論文件的內容發生了任何形式的改變(包括人為修改或者下載過程中線路不穩定引起的傳輸錯誤等),只要你對這個文件重新計算md5時就會發現信息摘要不相同,由此可以確定你得到的只是一個不正確的文件。如果再有一個第三方的認證機構,用md5還可以防止文件作者的"抵賴",這就是所謂的數字簽名應用。
md5還廣泛用於加密和解密技術上。比如在unix系統中用戶的密碼就是以md5(或其它類似的演算法)經加密後存儲在文件系統中。當用戶登錄的時候,系統把用戶輸入的密碼計算成md5值,然後再去和保存在文件系統中的md5值進行比較,進而確定輸入的密碼是否正確。通過這樣的步驟,系統在並不知道用戶密碼的明碼的情況下就可以確定用戶登錄系統的合法性。這不但可以避免用戶的密碼被具有系統管理員許可權的用戶知道,而且還在一定程度上增加了密碼被破解的難度。
正是因為這個原因,現在被黑客使用最多的一種破譯密碼的方法就是一種被稱為"跑字典"的方法。有兩種方法得到字典,一種是日常搜集的用做密碼的字元串表,另一種是用排列組合方法生成的,先用md5程序計算出這些字典項的md5值,然後再用目標的md5值在這個字典中檢索。我們假設密碼的最大長度為8位位元組(8 bytes),同時密碼只能是字母和數字,共26+26+10=62個字元,排列組合出的字典的項數則是p(62,1)+p(62,2)….+p(62,8),那也已經是一個很天文的數字了,存儲這個字典就需要tb級的磁碟陣列,而且這種方法還有一個前提,就是能獲得目標賬戶的密碼md5值的情況下才可以。這種加密技術被廣泛的應用於unix系統中,這也是為什麼unix系統比一般操作系統更為堅固一個重要原因。
演算法描述
對md5演算法簡要的敘述可以為:md5以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。
在md5演算法中,首先需要對信息進行填充,使其位元組長度對512求余的結果等於448。因此,信息的位元組長度(bits length)將被擴展至n*512+448,即n*64+56個位元組(bytes),n為一個正整數。填充的方法如下,在信息的後面填充一個1和無數個0,直到滿足上面的條件時才停止用0對信息的填充。然後,在在這個結果後面附加一個以64位二進製表示的填充前信息長度。經過這兩步的處理,現在的信息位元組長度=n*512+448+64=(n+1)*512,即長度恰好是512的整數倍。這樣做的原因是為滿足後面處理中對信息長度的要求。
md5中有四個32位被稱作鏈接變數(chaining variable)的整數參數,他們分別為:a=0x01234567,b=0x89abcdef,c=0xfedcba98,d=0x76543210。
當設置好這四個鏈接變數後,就開始進入演算法的四輪循環運算。循環的次數是信息中512位信息分組的數目。
將上面四個鏈接變數復制到另外四個變數中:a到a,b到b,c到c,d到d。
主循環有四輪(md4隻有三輪),每輪循環都很相似。第一輪進行16次操作。每次操作對a、b、c和d中的其中三個作一次非線性函數運算,然後將所得結果加上第四個變數,文本的一個子分組和一個常數。再將所得結果向右環移一個不定的數,並加上a、b、c或d中之一。最後用該結果取代a、b、c或d中之一。
以一下是每次操作中用到的四個非線性函數(每輪一個)。
f(x,y,z) =(x&y)|((~x)&z)
g(x,y,z) =(x&z)|(y&(~z))
h(x,y,z) =x^y^z
i(x,y,z)=y^(x|(~z))
(&是與,|是或,~是非,^是異或)
這四個函數的說明:如果x、y和z的對應位是獨立和均勻的,那麼結果的每一位也應是獨立和均勻的。
f是一個逐位運算的函數。即,如果x,那麼y,否則z。函數h是逐位奇偶操作符。
假設mj表示消息的第j個子分組(從0到15),<<
ff(a,b,c,d,mj,s,ti)表示a=b+((a+(f(b,c,d)+mj+ti)<< gg(a,b,c,d,mj,s,ti)表示a=b+((a+(g(b,c,d)+mj+ti)<< hh(a,b,c,d,mj,s,ti)表示a=b+((a+(h(b,c,d)+mj+ti)<< ii(a,b,c,d,mj,s,ti)表示a=b+((a+(i(b,c,d)+mj+ti)<<
這四輪(64步)是:
第一輪
ff(a,b,c,d,m0,7,0xd76aa478)
ff(d,a,b,c,m1,12,0xe8c7b756)
ff(c,d,a,b,m2,17,0x242070db)
ff(b,c,d,a,m3,22,0xc1bdceee)
ff(a,b,c,d,m4,7,0xf57c0faf)
ff(d,a,b,c,m5,12,0x4787c62a)
ff(c,d,a,b,m6,17,0xa8304613)
ff(b,c,d,a,m7,22,0xfd469501)
ff(a,b,c,d,m8,7,0x698098d8)
ff(d,a,b,c,m9,12,0x8b44f7af)
ff(c,d,a,b,m10,17,0xffff5bb1)
ff(b,c,d,a,m11,22,0x895cd7be)
ff(a,b,c,d,m12,7,0x6b901122)
ff(d,a,b,c,m13,12,0xfd987193)
ff(c,d,a,b,m14,17,0xa679438e)
ff(b,c,d,a,m15,22,0x49b40821)
第二輪
gg(a,b,c,d,m1,5,0xf61e2562)
gg(d,a,b,c,m6,9,0xc040b340)
gg(c,d,a,b,m11,14,0x265e5a51)
gg(b,c,d,a,m0,20,0xe9b6c7aa)
gg(a,b,c,d,m5,5,0xd62f105d)
gg(d,a,b,c,m10,9,0x02441453)
gg(c,d,a,b,m15,14,0xd8a1e681)
gg(b,c,d,a,m4,20,0xe7d3fbc8)
gg(a,b,c,d,m9,5,0x21e1cde6)
gg(d,a,b,c,m14,9,0xc33707d6)
gg(c,d,a,b,m3,14,0xf4d50d87)
gg(b,c,d,a,m8,20,0x455a14ed)
gg(a,b,c,d,m13,5,0xa9e3e905)
gg(d,a,b,c,m2,9,0xfcefa3f8)
gg(c,d,a,b,m7,14,0x676f02d9)
gg(b,c,d,a,m12,20,0x8d2a4c8a)
第三輪
hh(a,b,c,d,m5,4,0xfffa3942)
hh(d,a,b,c,m8,11,0x8771f681)
hh(c,d,a,b,m11,16,0x6d9d6122)
hh(b,c,d,a,m14,23,0xfde5380c)
hh(a,b,c,d,m1,4,0xa4beea44)
hh(d,a,b,c,m4,11,0x4bdecfa9)
hh(c,d,a,b,m7,16,0xf6bb4b60)
hh(b,c,d,a,m10,23,0xbebfbc70)
hh(a,b,c,d,m13,4,0x289b7ec6)
hh(d,a,b,c,m0,11,0xeaa127fa)
hh(c,d,a,b,m3,16,0xd4ef3085)
hh(b,c,d,a,m6,23,0x04881d05)
hh(a,b,c,d,m9,4,0xd9d4d039)
hh(d,a,b,c,m12,11,0xe6db99e5)
hh(c,d,a,b,m15,16,0x1fa27cf8)
hh(b,c,d,a,m2,23,0xc4ac5665)
第四輪
ii(a,b,c,d,m0,6,0xf4292244)
ii(d,a,b,c,m7,10,0x432aff97)
ii(c,d,a,b,m14,15,0xab9423a7)
ii(b,c,d,a,m5,21,0xfc93a039)
ii(a,b,c,d,m12,6,0x655b59c3)
ii(d,a,b,c,m3,10,0x8f0ccc92)
ii(c,d,a,b,m10,15,0xffeff47d)
ii(b,c,d,a,m1,21,0x85845dd1)
ii(a,b,c,d,m8,6,0x6fa87e4f)
ii(d,a,b,c,m15,10,0xfe2ce6e0)
ii(c,d,a,b,m6,15,0xa3014314)
ii(b,c,d,a,m13,21,0x4e0811a1)
ii(a,b,c,d,m4,6,0xf7537e82)
ii(d,a,b,c,m11,10,0xbd3af235)
ii(c,d,a,b,m2,15,0x2ad7d2bb)
ii(b,c,d,a,m9,21,0xeb86d391)
常數ti可以如下選擇:
在第i步中,ti是4294967296*abs(sin(i))的整數部分,i的單位是弧度。(4294967296等於2的32次方)
所有這些完成之後,將a、b、c、d分別加上a、b、c、d。然後用下一分組數據繼續運行演算法,最後的輸出是a、b、c和d的級聯。
當你按照我上面所說的方法實現md5演算法以後,你可以用以下幾個信息對你做出來的程序作一個簡單的測試,看看程序有沒有錯誤。
md5 ("") =
md5 ("a") =
md5 ("abc") =
md5 ("message digest") =
md5 ("abcdefghijklmnopqrstuvwxyz") =
md5 ("") =
md5 ("
01234567890") =
如果你用上面的信息分別對你做的md5演算法實例做測試,最後得出的結論和標准答案完全一樣,那我就要在這里象你道一聲祝賀了。要知道,我的程序在第一次編譯成功的時候是沒有得出和上面相同的結果的。
md5的安全性
md5相對md4所作的改進:
1. 增加了第四輪;
2. 每一步均有唯一的加法常數;
3. 為減弱第二輪中函數g的對稱性從(x&y)|(x&z)|(y&z)變為(x&z)|(y&(~z));
4. 第一步加上了上一步的結果,這將引起更快的雪崩效應;
5. 改變了第二輪和第三輪中訪問消息子分組的次序,使其更不相似;
6. 近似優化了每一輪中的循環左移位移量以實現更快的雪崩效應。各輪的位移量互不相同。
[color=red]簡單的說:
MD5叫信息-摘要演算法,是一種密碼的演算法,它可以對任何文件產生一個唯一的MD5驗證碼,每個文件的MD5碼就如同每個人的指紋一樣,都是不同的,這樣,一旦這個文件在傳輸過程中,其內容被損壞或者被修改的話,那麼這個文件的MD5碼就會發生變化,通過對文件MD5的驗證,可以得知獲得的文件是否完整。
5. md5是什麼
MD5信息摘要演算法(英語:MD5 Message-Digest Algorithm),一種被廣泛使用的密碼散列函數,可以產生出一個128位(16位元組)的散列值(hash value),用於確保信息傳輸完整一致。
MD5由美國密碼學家羅納德·李維斯特(Ronald Linn Rivest)設計,於1992年公開,用以取代MD4演算法。這套演算法的程序在 RFC 1321 標准中被加以規范。
1996年後該演算法被證實存在弱點,可以被加以破解,對於需要高度安全性的數據,專家一般建議改用其他演算法,如SHA-2。2004年,證實MD5演算法無法防止碰撞(collision),因此不適用於安全性認證,如SSL公開密鑰認證或是數字簽名等用途。
用於密碼管理
當我們需要保存某些密碼信息以用於身份確認時,如果直接將密碼信息以明碼方式保存在資料庫中,不使用任何保密措施,系統管理員就很容易能得到原來的密碼信息,這些信息一旦泄露, 密碼也很容易被破譯。
為了增加安全性,有必要對資料庫中需要保密的信息進行加密,這樣,即使有人得到了整個資料庫,如果沒有解密演算法,也不能得到原來的密碼信息。MD5演算法可以很好地解決這個問題,因為它可以將任意長度的輸入串經過計算得到固定長度的輸出,而且只有在明文相同的情況下。
才能等到相同的密文,並且這個演算法是不可逆的,即便得到了加密以後的密文,也不可能通過解密演算法反算出明文。