Ⅰ 編譯原理技術有哪些應用呢
編譯原理,說得通俗易懂一些就是:讓機器通過某種機制和規則,將一種由人們書寫的高級程序代碼,經過若干步驟,最終翻譯成機器可理解執行的二進制代碼。
編譯原理技術的具體應用,例如:
(1)、我們用戶通常編寫的 C/C++ 程序源代碼(*.C/*.CPP),通過 Microsoft Visual C++ 編譯器,將由人工書寫的 C/C++ 語言程序源代碼(*.C/*.CPP),最終翻譯成機器可執行的二進制代碼(*.EXE);
(2)、人工智慧領域中的自然語言處理、機器翻譯技術(例如:英/漢翻譯、日/漢翻譯系統等)等,都需要使用到編譯原理技術。
Ⅱ 編譯器開發的四種技術
編譯程序的開發常常採用這四種:自編譯、交叉編譯、自展和移植等技術實現。
Ⅲ 了解什麼叫做jit compiling,與傳統的編譯技術有何不同
java 應用程序的性能經常成為開發社區中的討論熱點。因為該語言的設計初衷是使用解釋的方式支持應用程序的可移植性目標,早期
Java 運行時所提供的性能級別遠低於 C 和
C++
之類的編譯語言。盡管這些語言可以提供更高的性能,但是生成的代碼只能在有限的幾種系統上執行。在過去的十年中,Java
運行時供應商開發了一些復雜的動態編譯器,通常稱作即時(Just-in-time,JIT)編譯器。程序運行時,JIT
編譯器選擇將最頻繁執行的方法編譯成本地代碼。運行時才進行本地代碼編譯而不是在程序運行前進行編譯(用 C 或
C++ 編寫的程序正好屬於後一情形),保證了可移植性的需求。有些 JIT 編譯器甚至不使用解釋程序就能編譯所有的代碼,但是這些編譯器仍然通過在程序執行時進行一些操作來保持 Java 應用程序的可移植性。
由於動態編譯技術的多項改進,在很多應用程序中,現代的 JIT 編譯器可以產生與 C 或 C++
靜態編譯相當的應用程序性能。但是,仍然有很多軟體開發人員認為 —— 基於經驗或者傳聞 ——
動態編譯可能嚴重干擾程序操作,因為編譯器必須與應用程序共享 CPU。一些開發人員強烈呼籲對 Java
代碼進行靜態編譯,並且堅信那樣可以解決性能問題。對於某些應用程序和執行環境而言,這種觀點是正確的,靜態編譯可以極大地提高 Java
性能,或者說它是惟一的實用選擇。但是,靜態地編譯 Java 應用程序在獲得高性能的同時也帶來了很多復雜性。一般的
Java 開發人員可能並沒有充分地感受到 JIT 動態編譯器的優點。
本文考察了 Java 語言靜態編譯和動態編譯所涉及的一些問題,重點介紹了實時 (RT) 系統。簡要描述了 Java
語言解釋程序的操作原理並說明了現代 JIT 編譯器執行本地代碼編譯的優缺點。介紹了 IBM 在 WebSphere Real Time 中發布的
AOT 編譯技術和它的一些優缺點。然後比較了這兩種編譯策略並指出了幾種比較適合使用 AOT
編譯的應用程序領域和執行環境。要點在於這兩種編譯技術並不互斥:即使在使用這兩種技術最為有效的各種應用程序中,它們也分別存在一些影響應用程序的優缺
點。
執行 Java 程序
Java 程序最初是通過 Java SDK 的 javac程序編譯成本地的與平台無關的格式(類文件)。可將此格式看作 Java
平台,因為它定義了執行 Java 程序所需的所有信息。Java 程序執行引擎,也稱作 Java 運行時環境(JRE),包含了為特定的本地平台實現
Java 平台的虛擬機。例如,基於 Linux 的 Intel x86 平台、Sun Solaris 平台和 AIX 操作系統上運行的 IBM
System p 平台,每個平台都擁有一個 JRE。這些 JRE 實現實現了所有的本地支持,從而可以正確執行為
Java 平台編寫的程序。
事實上,操作數堆棧的大小有實際限制,但是編程人員極少編寫超出該限制的方法。JVM 提供了安全性檢查,對那些創建出此類方法的編程人員進行通知。
Java 平台程序表示的一個重要部分是位元組碼序列,它描述了 Java
類中每個方法所執行的操作。位元組碼使用一個理論上無限大的操作數堆棧來描述計算。這個基於堆棧的程序表示提供了平台無關性,因為它不依賴任何特定本地平台
的 CPU 中可用寄存器的數目。可在操作數堆棧上執行的操作的定義都獨立於所有本地處理器的指令集。Java
虛擬機(JVM)規范定義了這些位元組碼的執行(參見 參考資料)。執行 Java 程序時,用於任何特定本地平台的任何 JRE 都必須遵守 JVM
規范中列出的規則。
因為基於堆棧的本地平台很少(Intel X87 浮點數協處理器是一個明顯的例外),所以大多數本地平台不能直接執行 Java 位元組碼。為了解決這個問題,早期的 JRE 通過解釋位元組碼來執行 Java 程序。即 JVM 在一個循環中重復操作:
◆獲取待執行的下一個位元組碼;
◆解碼;
◆從操作數堆棧獲取所需的操作數;
◆按照 JVM 規范執行操作;
◆將結果寫回堆棧。
這種方法的優點是其簡單性:JRE 開發人員只需編寫代碼來處理每種位元組碼即可。並且因為用於描述操作的位元組碼少於 255 個,所以實現的成本比較低。當然,缺點是性能:這是一個早期造成很多人對 Java 平台不滿的問題,盡管擁有很多其他優點。
解決與 C 或 C++ 之類的語言之間的性能差距意味著,使用不會犧牲可移植性的方式開發用於 Java 平台的本地代碼編譯。
編譯 Java 代碼
盡管傳聞中 Java 編程的 「一次編寫,隨處運行」
的口號可能並非在所有情況下都嚴格成立,但是對於大量的應用程序來說情況確實如此。另一方面,本地編譯本質上是特定於平台的。那麼 Java
平台如何在不犧牲平台無關性的情況下實現本地編譯的性能?答案就是使用 JIT 編譯器進行動態編譯,這種方法已經使用了十年(參見圖 1):
圖 1. JIT 編譯器
使用 JIT 編譯器時,Java
程序按每次編譯一個方法的形式進行編譯,因為它們在本地處理器指令中執行以獲得更高的性能。此過程將生成方法的一個內部表示,該表示與位元組碼不同但是其級
別要高於目標處理器的本地指令。(IBM JIT
編譯器使用一個表達式樹序列表示方法的操作。)編譯器執行一系列優化以提高質量和效率,最後執行一個代碼生成步驟將優化後的內部表示轉換成目標處理器的本
地指令。生成的代碼依賴運行時環境來執行一些活動,比如確保類型轉換的合法性或者對不能在代碼中直接執行的某些類型的對象進行分配。JIT
編譯器操作的編譯線程與應用程序線程是分開的,因此應用程序不需要等待編譯的執行。
圖 1 中還描述了用於觀察執行程序行為的分析框架,通過周期性地對線程取樣找出頻繁執行的方法。該框架還為專門進行分析的方法提供了工具,用來存儲程序的此次執行中可能不會改變的動態值。
因為這個 JIT 編譯過程在程序執行時發生,所以能夠保持平台無關性:發布的仍然是中立的 Java 平台代碼。C 和 C++ 之類的語言缺乏這種優點,因為它們在程序執行前進行本地編譯;發布給(本地平台)執行環境的是本地代碼。
挑戰
盡管通過 JIT 編譯保持了平台無關性,但是付出了一定代價。因為在程序執行時進行編譯,所以編譯代碼的時間將計入程序的執行時間。任何編寫過大型 C 或 C++ 程序的人都知道,編譯過程往往較慢。
為了克服這個缺點,現代的 JIT
編譯器使用了下面兩種方法的任意一種(某些情況下同時使用了這兩種方法)。第一種方法是:編譯所有的代碼,但是不執行任何耗時多的分析和轉換,因此可以快
速生成代碼。由於生成代碼的速度很快,因此盡管可以明顯觀察到編譯帶來的開銷,但是這很容易就被反復執行本地代碼所帶來的性能改善所掩蓋。第二種方法是:
將編譯資源只分配給少量的頻繁執行的方法(通常稱作熱方法)。低編譯開銷更容易被反復執行熱代碼帶來的性能優勢掩蓋。很多應用程序只執行少量的熱方法,因
此這種方法有效地實現了編譯性能成本的最小化。
動態編譯器的一個主要的復雜性在於權衡了解編譯代碼的預期獲益使方法的執行對整個程序的性能起多大作用。一個極端的例子是,程序執行後,您非常清楚哪些方
法對於這個特定的執行的性能貢獻最大,但是編譯這些方法毫無用處,因為程序已經完成。而在另一個極端,程序執行前無法得知哪些方法重要,但是每種方法的潛
在受益都最大化了。大多數動態編譯器的操作介於這兩個極端之間,方法是權衡了解方法預期獲益的重要程度。
Java 語言需要動態載入類這一事實對 Java
編譯器的設計有著重要的影響。如果待編譯代碼引用的其他類還沒有載入怎麼辦?比如一個方法需要讀取某個尚未載入的類的靜態欄位值。Java
語言要求第一次執行類引用時載入這個類並將其解析到當前的 JVM
中。直到第一次執行時才解析引用,這意味著沒有地址可供從中載入該靜態欄位。編譯器如何處理這種可能性?編譯器生成一些代碼,用於在沒有載入類時載入並解
析類。類一旦被解析,就會以一種線程安全的方式修改原始代碼位置以便直接訪問靜態欄位的地址,因為此時已獲知該地址。
IBM JIT
編譯器中進行了大量的努力以便使用安全而有效率的代碼補丁技術,因此在解析類之後,執行的本地代碼只載入欄位的值,就像編譯時已經解析了欄位一樣。另外一
種方法是生成一些代碼,用於在查明欄位的位置以前一直檢查是否已經解析欄位,然後載入該值。對於那些由未解析變成已解析並被頻繁訪問的欄位來說,這種簡單
的過程可能帶來嚴重的性能問題。
動態編譯的優點
動態地編譯 Java 程序有一些重要的優點,甚至能夠比靜態編譯語言更好地生成代碼,現代的 JIT 編譯器常常向生成的代碼中插入掛鉤以收集有關程序行為的信息,以便如果要選擇方法進行重編譯,就可以更好地優化動態行為。
關於此方法的一個很好的例子是收集一個特定 array操作的長度。如果發現每次執行操作時該長度基本不變,則可以為最頻繁使用的
array長度生成專門的代碼,或者可以調用調整為該長度的代碼序列。由於內存系統和指令集設計的特性,用於復制內存的最佳通用常式的執行速度通
常比用於復制特定長度的代碼慢。例如,復制 8
個位元組的對齊的數據可能需要一到兩條指令直接復制,相比之下,使用可以處理任意位元組數和任意對齊方式的一般復制循環可能需要 10 條指令來復制同樣的 8
個位元組。但是,即使此類專門的代碼是為某個特定的長度生成的,生成的代碼也必須正確地執行其他長度的復制。生成代碼只是為了使常見長度的操作執行得更快,
因此平均下來,性能得到了改進。此類優化對大多數靜態編譯語言通常不實用,因為所有可能的執行中長度恆定的操作比一個特定程序執行中長度恆定的操作要少得
多。
此類優化的另一個重要的例子是基於類層次結構的優化。例如,一個虛方法調用需要查看接收方對象的類調用,以便找出哪個實際目標實現了接收方對象的虛方法。
研究表明:大多數虛調用只有一個目標對應於所有的接收方對象,而 JIT
編譯器可以為直接調用生成比虛調用更有效率的代碼。通過分析代碼編譯後類層次結構的狀態,JIT
編譯器可以為虛調用找到一個目標方法,並且生成直接調用目標方法的代碼而不是執行較慢的虛調用。當然,如果類層次結構發生變化,並且出現另外的目標方法,
則 JIT
編譯器可以更正最初生成的代碼以便執行虛調用。在實踐中,很少需要作出這些更正。另外,由於可能需要作出此類更正,因此靜態地執行這種優化非常麻煩。
因為動態編譯器通常只是集中編譯少量的熱方法,所以可以執行更主動的分析來生成更好的代碼,使編譯的回報更高。事實上,大部分現代的
JIT
編譯器也支持重編譯被認為是熱方法的方法。可以使用靜態編譯器(不太強調編譯時間)中常見的非常主動的優化來分析和轉換這些頻繁執行的方法,以便生成更好
的代碼並獲得更高的性能。
這些改進及其他一些類似的改進所產生的綜合效果是:對於大量的 Java 應用程序來說,動態編譯已經彌補了與 C 和 C++ 之類語言的靜態本地編譯性能之間的差距,在某些情況下,甚至超過了後者的性能。
缺點
但是,動態編譯確實具有一些缺點,這些缺點使它在某些情況下算不上一個理想的解決方案。例如,因為識別頻繁執行的方法以及編譯這些方法需要時間,所以應用
程序通常要經歷一個准備過程,在這個過程中性能無法達到其最高值。在這個准備過程中出現性能問題有幾個原因。首先,大量的初始編譯可能直接影響應用程序的
啟動時間。不僅這些編譯延遲了應用程序達到穩定狀態的時間(想像 Web
伺服器經
歷一個初始階段後才能夠執行實際有用的工作),而且在准備階段中頻繁執行的方法可能對應用程序的穩定狀態的性能所起的作用也不大。如果 JIT
編譯會延遲啟動又不能顯著改善應用程序的長期性能,則執行這種編譯就非常浪費。雖然所有的現代 JVM
都執行調優來減輕啟動延遲,但是並非在所有情況下都能夠完全解決這個問題。
其次,有些應用程序完全不能忍受動態編譯帶來的延遲。如 GUI 介面之類互動式應用程序就是這樣的例子。在這種情況下,編譯活動可能對用戶使用造成不利影響,同時又不能顯著地改善應用程序的性能。
最後,用於實時環境並具有嚴格的任務時限的應用程序可能無法忍受編譯的不確定性性能影響或動態編譯器本身的內存開銷。
因此,雖然 JIT 編譯技術已經能夠提供與靜態語言性能相當(甚至更好)的性能水平,但是動態編譯並不適合於某些應用程序。在這些情況下,Java 代碼的提前(Ahead-of-time,AOT)編譯可能是合適的解決方案。
AOT Java 編譯
大致說來,Java 語言本地編譯應該是為傳統語言(如 C++ 或
Fortran)而開發的編譯技術的一個簡單應用。不幸的是,Java 語言本身的動態特性帶來了額外的復雜性,影響了 Java
程序靜態編譯代碼的質量。但是基本思想仍然是相同的:在程序執行前生成 Java 方法的本地代碼,以便在程序運行時直接使用本地代碼。目的在於避免
JIT 編譯器的運行時性能消耗或內存消耗,或者避免解釋程序的早期性能開銷。
挑戰
動態類載入是動態 JIT 編譯器面臨的一個挑戰,也是 AOT
編譯的一個更重要的問題。只有在執行代碼引用類的時候才載入該類。因為是在程序執行前進行 AOT
編譯的,所以編譯器無法預測載入了哪些類。就是說編譯器無法獲知任何靜態欄位的地址、任何對象的任何實例欄位的偏移量或任何調用的實際目標,甚至對直接調
用(非虛調用)也是如此。在執行代碼時,如果證明對任何這類信息的預測是錯誤的,這意味著代碼是錯誤的並且還犧牲了 Java 的一致性。
因為代碼可以在任何環境中執行,所以類文件可能與代碼編譯時不同。例如,一個 JVM
實例可能從磁碟的某個特定位置載入類,而後面一個實例可能從不同的位置甚至網路載入該類。設想一個正在進行 bug
修復的開發環境:類文件的內容可能隨不同的應用程序的執行而變化。此外,Java 代碼可能在程序執行前根本不存在:比如 Java
反射服務通常在運行時生成新類來支持程序的行為。
缺少關於靜態、欄位、類和方法的信息意味著嚴重限制了 Java 編譯器中優化框架的大部分功能。內聯可能是靜態或動態編譯器應用的最重要的優化,但是由於編譯器無法獲知調用的目標方法,因此無法再使用這種優化。
內聯
內聯是一種用於在運行時生成代碼避免程序開始和結束時開銷的技術,方法是將函數的調用代碼插入到調用方的函數中。但是內聯最大的益處可能是優化方可見的代碼的范圍擴大了,從而能夠生成更高質量的代碼。下面是一個內聯前的代碼示例:
int foo() { int x=2, y=3; return bar(x,y); }final int bar(int a, int b) { return a+b; }
如果編譯器可以證明這個 bar就是 foo()中調用的那個方法,則 bar中的代碼可以取代 foo()中對
bar()的調用。這時,bar()方法是 final類型,因此肯定是 foo()中調用的那個方法。甚至在一些虛調用例子中,動態 JIT
編譯器通常能夠推測性地內聯目標方法的代碼,並且在絕大多數情況下能夠正確使用。編譯器將生成以下代碼:
int foo() { int x=2, y=3; return x+y; }
在這個例子中,簡化前名為值傳播的優化可以生成直接返回
5的代碼。如果不使用內聯,則不能執行這種優化,產生的性能就會低很多。如果沒有解析
bar()方法(例如靜態編譯),則不能執行這種優化,而代碼必須執行虛調用。運行時,實際調用的可能是另外一個執行兩個數字相乘而不是相加的
bar方法。所以不能在 Java 程序的靜態編譯期間直接使用內聯。
AOT
代碼因此必須在沒有解析每個靜態、欄位、類和方法引用的情況下生成。執行時,每個這些引用必須利用當前運行時環境的正確值進行更新。這個過程可能直接影響
第一次執行的性能,因為在第一次執行時將解析所有引用。當然,後續執行將從修補代碼中獲益,從而可以更直接地引用實例、靜態欄位或方法目標。
另外,為 Java 方法生成的本地代碼通常需要使用僅在單個 JVM 實例中使用的值。例如,代碼必須調用 JVM
運行時中的某些運行時常式來執行特定操作,如查找未解析的方法或分配內存。這些運行時常式的地址可能在每次將 JVM 載入到內存時變化。因此 AOT
編譯代碼需要綁定到 JVM 的當前執行環境中,然後才能執行。其他的例子有字元串的地址和常量池入口的內部位置。
在 WebSphere Real Time 中,AOT 本地代碼編譯通過 jxeinajar工具(參見圖 2)來執行。該工具對 JAR 文件中所有類的所有方法應用本地代碼編譯,也可以選擇性地對需要的方法應用本地代碼編譯。結果被存儲到名為 Java eXEcutable (JXE) 的內部格式中,但是也可輕松地存儲到任意的持久性容器中。
您可能認為對所有的代碼進行靜態編譯是最好的方法,因為可以在運行時執行最大數量的本地代碼。但是此處可以作出一些權衡。編譯的方法越多,代碼佔用的內存
就越多。編譯後的本地代碼大概比位元組碼大 10 倍:本地代碼本身的密度比位元組碼小,而且必須包含代碼的附加元數據,以便將代碼綁定到 JVM
中,並且在出現異常或請求堆棧跟蹤時正確執行代碼。構成普通 Java 應用程序的 JAR
文件通常包含許多很少執行的方法。編譯這些方法會消耗內存卻沒有什麼預期收益。相關的內存消耗包括以下過程:將代碼存儲到磁碟上、從磁碟取出代碼並裝入
JVM,以及將代碼綁定到 JVM。除非多次執行代碼,否則這些代價不能由本地代碼相對解釋的性能優勢來彌補。
圖 2. jxeinajar
跟大小問題相違背的一個事實是:在編譯過的方法和解釋過的方法之間進行的調用(即編譯過的方法調用解釋過的方法,或者相反)可能比這兩類方法各自內部之間
進行的調用所需的開銷大。動態編譯器通過最終編譯所有由 JIT
編譯代碼頻繁調用的那些解釋過的方法來減少這項開銷,但是如果不使用動態編譯器,則這項開銷就不可避免。因此如果是選擇性地編譯方法,則必須謹慎操作以使
從已編譯方法到未編譯方法的轉換最小化。為了在所有可能的執行中都避免這個問題而選擇正確的方法會非常困難。
優點
雖然 AOT 編譯代碼具有上述的缺點和挑戰,但是提前編譯 Java 程序可以提高性能,尤其是在不能將動態編譯器作為有效解決方案的環境中。
可以通過謹慎地使用 AOT 編譯代碼加快應用程序啟動,因為雖然這種代碼通常比 JIT
編譯代碼慢,但是卻比解釋代碼快很多倍。此外,因為載入和綁定 AOT
編譯代碼的時間通常比檢測和動態編譯一個重要方法的時間少,所以能夠在程序執行的早期達到那樣的性能。類似地,互動式應用程序可以很快地從本地代碼中獲
益,無需使用引起較差響應能力的動態編譯。
RT 應用程序也能從 AOT 編譯代碼中獲得重要的收益:更具確定性的性能超過了解釋的性能。WebSphere Real Time
使用的動態 JIT 編譯器針對在 RT 系統中的使用進行了專門的調整。使編譯線程以低於 RT
任務的優先順序操作,並且作出了調整以避免生成帶有嚴重的不確定性性能影響的代碼。但是,在一些 RT 環境中,出現 JIT
編譯器是不可接受的。此類環境通常需要最嚴格的時限管理控制。在這些例子中,AOT
編譯代碼可以提供比解釋過的代碼更好的原始性能,又不會影響現有的確定性。消除 JIT
編譯線程甚至消除了啟動更高優先順序 RT 任務時發生的線程搶占所帶來的性能影響。
優缺點統計
動態(JIT)編譯器支持平台中立性,並通過利用應用程序執行的動態行為和關於載入的類及其層次結構的信息來生成高質量的代碼。但是
JIT
編譯器具有一個有限的編譯時預算,而且會影響程序的運行時性能。另一方面,靜態(AOT)編譯器則犧牲了平台無關性和代碼質量,因為它們不能利用程序的動
態行為,也不具有關於載入的類或類層次結構的信息。AOT 編譯擁有有效無限制的編譯時預算,因為 AOT
編譯時間不會影響運行時性能,但是在實踐中開發人員不會長期等待靜態編譯步驟的完成。
表 1 總結了本文討論的 Java 語言動態和靜態編譯器的一些特性:
表 1. 比較編譯技術
兩種技術都需要謹慎選擇編譯的方法以實現最高的性能。對動態編譯器而言,編譯器自身作出決策,而對於靜態編譯器,由開發人員作出選擇。讓
JIT 編譯器選擇編譯的方法是不是優點很難說,取決於編譯器在給定情形中推斷能力的好壞。在大多數情況下,我們認為這是一種優點。
因為它們可以最好地優化運行中的程序,所以 JIT 編譯器在提供穩定狀態性能方面更勝一籌,而這一點在大量的生產 Java
系統中最為重要。靜態編譯可以產生最佳的互動式性能,因為沒有運行時編譯行為來影響用戶預期的響應時間。通過調整動態編譯器可以在某種程度上解決啟動和確
定性性能問題,但是靜態編譯在需要時可提供最快的啟動速度和最高級別的確定性。表 2 在四種不同的執行環境中對這兩種編譯技術進行了比較:
表 2. 使用這些技術的最佳環境
圖 3 展示了啟動性能和穩定狀態性能的總體趨勢:
圖 3. AOT 和 JIT 的性能對比
使用 JIT 編譯器的初始階段性能很低,因為要首先解釋方法。隨著編譯方法的增多及 JIT
執行編譯所需時間的縮短,性能曲線逐漸升高最後達到性能峰值。另一方面,AOT 編譯代碼啟動時的性能比解釋的性能高很多,但是無法達到 JIT
編譯器所能達到的最高性能。將靜態代碼綁定到 JVM 實例中會產生一些開銷,因此開始時的性能比穩定狀態的性能值低,但是能夠比使用 JIT
編譯器更快地達到穩定狀態的性能水平。
沒有一種本地代碼編譯技術能夠適合所有的 Java
執行環境。某種技術所擅長的通常正是其他技術的弱項。出於這個原因,需要同時使用這兩種編譯技術以滿足 Java
應用程序開發人員的要求。事實上,可以結合使用靜態和動態編譯以便提供最大可能的性能提升 —— 但是必須具備平台無關性,它是 Java
語言的主要賣點,因此不成問題。
結束語
本文探討了 Java 語言本地代碼編譯的問題,主要介紹了 JIT 編譯器形式的動態編譯和靜態 AOT 編譯,比較了二者的優缺點。
雖然動態編譯器在過去的十年裡實現了極大的成熟,使大量的各種 Java 應用程序可以趕上或超過靜態編譯語言(如 C++ 或
Fortran)所能夠達到的性能。但是動態編譯在某些類型的應用程序和執行環境中仍然不太合適。雖然 AOT
編譯號稱動態編譯缺點的萬能解決方案,但是由於 Java 語言本身的動態特性,它也面臨著提供本地編譯全部潛能的挑戰。
這兩種技術都不能解決 Java 執行環境中本地代碼編譯的所有需求,但是反過來又可以在最有效的地方作為工具使用。這兩種技術可以相互補充。能夠恰當地使用這兩種編譯模型的運行時系統可以使很大范圍內的應用程序開發環境中的開發人員和用戶受益。
Ⅳ Java 相關的編譯技術
除了 Java 的編譯器和虛擬機器之外 還有一些相關的編譯技術 本文章試圖做一個簡單的說明 JIT 編譯器 傳統的 Java 虛擬機器很愚蠢 將一道 bytecode 的指令翻譯成機器碼之後 馬上執行這些機器碼 執行完這批機器碼之後 就把這些機器碼丟了 接著再翻譯下一道 bytecode 的指令 繼續下去 即使下次執行到以前執行過的 bytecode 指令 依然要重新翻譯成機器碼才能執行 如此一來 效率當然不好 使用 JIT 編譯器(Just In Time piler)技術的虛擬機器比較聰明 會把常常執行的部分在第一次先翻譯好放在內存 以後再次執行到這里時 就不用再翻譯 直接從內存取出機器碼即可執行 這么一來 只要你的內存夠大 JIT 編譯器的技術夠好 你的 Java bytecode 執行速度也可以逼近純編譯式的程序 其它程序語言的編譯器 任何檔案只要符合 Java bytecode 的格式 就可以被 Java 虛擬機器執行 製造出 Java bytecode 的方式有許多種 不一定要使用 Java 語言來寫程序 才能編譯成 Java bytecode Java 是語言也是平台 你可以不使用 Java 語言(也就是 Java 編譯器) 只使用 Java 平台(也就是 Java 虛擬機器) 只要某語言有提供編譯器 能將該語言的原始碼編譯成 Java bytecode 格式 就可以在 Java 平台上執行 據我所知 目前已經有下列語言提供兼容於 Java 平台的編譯器(以英文字母順序排列) Aardappel Ada Agora BAMBOO Basic Bistro Bolero C C++ CLIPS COBOL Correlate Dawn E EcmaScript Eiffel Foo Forth Fortran Funnel Haskel Hojo javascript Jickle JIF Jinni Lisp LL LLP Logo Luck MINERVA Mini ML Mola NetRexx Nice Oberon Pascal PLAN Pnuts Prolog PS I Python Sather Scheme SELF Simkin Small Talk Tcl WebL Yassl Yoix Yoyo 原生編譯器 如果你不在乎 Java 程序能否跨平台 你希望 Java 程序能如同 C/C++ 一般被編譯成機器碼而非 Java bytecode 那麼你可以使用 Java 原生編譯器(native piler) 目前已經有不少這樣的產品可以使用 Java 原生編譯器有兩大類 一類可以把 Java 的原始碼編譯成機器碼 另一類則可以把 Java bytecode 編譯成機器碼 反編譯與混淆器 Java bytecode 因為檔案格式簡單 信息保留完整 且指令是最簡單的堆棧式(stack based)架構等因素 所以很容易被反編譯(de pilation) 反編譯指的是和編譯相反的過程 對 Java 來說 反編譯就是把 Java bytecode 轉換成 Java 原始碼的過程 為了防止你辛苦地開發出來的 Java bytecode 被他人反編譯成原始碼 你可以透過混淆器(obfuscator)將你的 Java bytecode 轉換成更混亂的 Java bytecode 執行起來效果一樣 但是被混淆過的 Java bytecode 比較不容易被反編譯 你通常要為此付出一點代價 因為混淆過的程序執行速度通常會變慢 且混淆器只能增加反編譯的難度 不能保證你的程序一定無法被反編譯成功 畢竟道高一尺 魔高一丈 如果有人願意花許多時間和精力反編譯你的 Java bytecode 你根本就無法攔阻 組譯與反組譯 匯編語言(assembly)是一種非常接近機器碼的語言 將匯編語言轉成機器碼的工具稱為組譯器(assembler) 反過來將機器碼轉成匯編語言的工具稱為反組譯器(dissembler) 對於 Java 虛擬機器來說 Java bytecode 就如同它的機器碼 有沒有一種語言是很接近 Java bytecode 的呢?也就是說 Java 有沒有的匯編語言呢?基本上 Sun 並未定義 Java 的標准匯編語言 但是有一些人定義了自己的 Java 匯編語言 並提供 Java 的組譯器(甚至反組譯器) 例如 Ja *** in 以及 javaa 都是 Java 組譯器 前處理器 前處理器(pre processor)也稱為前編譯器(pre piler)或前翻譯器(pre translator) 其目的在將源碼中不符合語言規范的部分轉換成符合語言規范的形式 比方說 我們可能在 ??????????Java 源碼中除了使用 Java 語言之外 還穿插使用自訂的語法 這些自訂的語法無法被 Java 編譯器處理 所以我們必須先透過一個前處理器來將自訂語法的部分轉換成 Java 語言 然後就可以交由 Java 編譯器處理 目前有不少 Java 的前處理器 例如 iContract SQLJ 都是用來擴充 Java 語言之用的 最佳化工具軟體 一般來說 最佳化有兩種 讓檔案體積變小 可以節省儲存空間並加快網路傳送速度 讓執行速度變快 對於 Java 來說 還有第三種最佳化 讓程序結構變亂 不容易被反編譯 也就是前面提到過的混淆(obfuscation) 這三個目的之間常常互相排擠 結構變亂 通常會使得程序變慢 且體積變大 體積變小 通常會使得速度變慢 且結構變整齊 速度變快 通常會使得體積變大 且結構變整齊 lishixin/Article/program/Java/hx/201311/27007
Ⅳ c語言編譯器是用什麼於語言寫的
第一個C語言編譯器應該是用匯編寫的,但是第一個成熟的C語言困敬編譯器應該是由匯編和C語言共同寫的。枝肢
編譯原理講到了「自舉編譯器」。大意就是先用底層語言(應該是匯編)寫一個能運行,但效率極低的C語言編譯器(底層語言不好優化),有了C語言的編譯器以後,就可以用C語言好好寫一個編譯器了,用之前那個運行沒汪搭慎問題,但效率低得編譯器編譯一下,就得到了可以使用的編譯器了。
Ⅵ Java的核心技術有哪些
第一:Java虛擬機 Java虛擬機的主要任務是裝在class文件並且執行其中的位元組碼。Java虛擬機包含一個類裝載器,它可以從程序和API中裝載class文件。Java API中只有程序執行時需要的那些類才會被裝載。位元組碼由執行引擎來執行。不同的Java虛擬機中,執行引擎可能實現得非常不同。在由軟體實現的虛擬機中,最簡單的執行引擎就是一次性解釋位元組碼。另一種執行引擎更快,但是也更消耗內存,叫做"即時編譯器(just-in-time compiler)"。在這種情況下,第一次被執行的位元組碼會被編譯成本地機器代碼。編譯出的本地機器代碼會被緩存,當方法以後被調用的時候可以重用。第三種執行引擎是自適應優化器。在這種方法里,虛擬機開始的時候解釋位元組碼,但是會監視運行中程序的活動,並且記錄下使用最頻繁的代碼段。程序運行的時候,虛擬機只把那些活動最頻繁的代碼編譯成本地代碼,其他的代碼由於使用得不是很頻繁,繼續保留為位元組碼-由虛擬機繼續解釋它們。一個自適應的優化器可以使得Java虛擬機在80%~90%的時間里執行被優化過的本地代碼,而只需要編譯10%~20%的對性能有影響的代碼。 當Java虛擬機是由主機操作系統上的軟體實現的時候,Java程序通過調用本地方法(native method)和主機交互。Java中有兩種方法: Java方法和本地方法。Java方法是由Java語言編寫,編譯成位元組碼文件,存儲在class文件中的。本地方法是由其他語言(比如c,c++或匯編語言)編寫的,編譯成何處理器相關的機器代碼。本地方法保存在動態鏈接庫中,格式是各個平台專有的。運行中Java程序調用本地方法時,虛擬機裝載包含這個本地方法的動態庫,並調用這個方法。本地方法是聯系Java程序和底層主機操作系統的連接方法。
第二:類裝載器的體系結構 一個Java應用程序可以使用兩種類裝載器:"啟動(bootstrap)"類裝載器和用戶定義的類裝載器。啟動類裝載器(這是系統中唯一的)是Java虛擬機實現的一部分。啟動類裝載器通常使用某種默認方式從本地磁碟中裝載類,包括Java API類(啟動類裝載器也被稱為原始類裝載器、系統類裝載器或者默認類裝載器)。 Java應用程序能夠在運行時安裝用戶定義的類裝載器,這種類裝載器能夠使用自定義的方式來裝載類。例如,從網路下載class文件。盡管啟動類裝載器是虛擬機實現的本質部分,而用戶定義的類裝載器不是,但用戶定義的類裝載器能夠用Java來編寫,能夠被編譯成class文件,能夠被虛擬機裝載,還能夠像其它對象一樣實例化。 由於有用戶定義類裝載器,所以不必再編譯的時候就知道運行中的Java應用程序中最終會加入的所有的類。用戶定義的類裝載器使得在運行擴展Java應用程序成為可能。當它運行時,應用程序能夠解決它需要哪些額外的類,能夠決定是使用一個或是更多的用戶定義的類裝載器來裝載。由於類裝載器是用Java編寫的,所以用任何在Java代碼中可以表述的風格來進行類裝載。這些類可以通過網路下載,可以從某些資料庫中獲取,甚至可以動態生成。 每一個類被裝載的時候,Java虛擬機都監視這個類,看到它到底是被啟動類裝載器還是被用戶定義類裝載器裝載。當被裝載的類引用了另外一個類時,虛擬機就會使用裝載第一個類的類裝載器裝載引用的類。例如,如果虛擬機使用一個特定的類裝載器裝載Volcano這個類,它就會使用這個類裝載器裝載Volcano類使用的所有類。 由於Java虛擬機採取這種方式進行類的裝載,所以被裝載的類默認情況下只能看到被同一個類裝載器裝載的別的類。通過這種方法,Java的體系結構允許在一個Java應用程序中建立多個命名空間。運行時的Java程序中的每一個類裝載器都有自己的命名空間。 Java應用程序可以創建多少個(或多少種)被不同的類裝載器裝載的類存放在不同的命名空間中,它們不能相互訪問,除非應用程序顯示地允許這么做。當編寫一個Java應用程序的時候,從不同源文件裝載的類可以分隔在不同的命名空間中。通過這種方法,就能夠使用Java類裝載器的體系結構來控制任何不同源文件中裝載的代碼之間的相互影響,特別是能夠阻止惡意代碼獲取訪問或破壞善意代碼的許可權。 Web瀏覽器是一個動態擴展的例子,Web瀏覽器使用用戶定義的類裝載器從網路下載用於Java applet的class文件。Web瀏覽器使用一個用來安裝用戶定義類裝載器的Java應用程序。這個用戶定義的類裝載器通常被稱為Java Applet類裝載器,它知道如何向HTTP伺服器請求class文件。Java Applet可以作為動態擴展的例子,因為Java應用程序並不知道它什麼時候會開始從網路下載瀏覽器請求的class文件。只有當瀏覽器遇到有Java applet的頁面時,才決定是否需要下載class文件。 Web瀏覽器啟動的Java應用程序通常為每個提供class文件的網路地址分別創建不同的用戶定義類裝載器,因此,不同的用戶定義類裝載器裝載不同來源的class文件。這就可以把它們分別放置在Java主機應用程序的不同命名空間之下。由於不同來源的Java applet文件放置在不同的命名空間中,惡意的Java applet代碼就不會直接訪問從別的地方下載的class文件。這就能夠限制或阻止不同來源的代碼之間的相互訪問。
第三:Java class文件 Java class文件主要在平台無關性和網路移動性方面使Java更適合網路。它在平台無關性方面的任務是:為Java程序提供獨立於底層主機平台的二進制形式的服務。這種途徑途徑打破了C或者C++等語言所遵循的傳統,使用這些傳統語言寫的程序通常首先被編譯,然後被連接成單獨的、專門支持特定硬體平台和操作系統的二進制文件。通常情況下,一個平台上的二進制可執行文件不能在其他平台上工作。而Java class文件時可以運行在任何支持Java虛擬機的硬體平台和操作系統上的二進制文件。 當編譯和連接一個C++程序時,所獲得的可執行二進制文件只能在指定的硬體平台和操作系統上運行,因為這個二進制文件包含了對目標處理器的機器語言。而Java編譯器把Java源文件的指令翻譯成位元組碼,這種位元組碼就是Java虛擬機的"機器語言"。class文件設計得緊湊,因此它們可以快速地在網路上傳送。其次,由於Java程序是動態連接和動態擴展的,class文件可以在需要的時候才下載。這個特點使得Java應用程序能夠安排從網路上下載class文件的時間,從而可以最大限度地減少終端用戶的等待時間。
第四:Java API Java API通過支持平台無關性和安全性,使得Java適應於網路應用。Java API是運行庫的集合,它提供了一套訪問主機系統資源的標准方法。運行Java程序時,虛擬機裝載程序的class文件所使用的Java API class文件。所有被裝載的class文件(包括從應用程序中和從Java API中提取的)和所有已經裝載的動態庫(包含本地方法)共同組成了再Java虛擬機上運行的整個程序。 在一個平台能偶支持Java程序以前,必須在這個特定平台上明確地實現API的功能。為訪問主機上的本地資源,Java API調用了本地方法。由於Java API class文件調用了本地方法,Java程序就不需要再調用它們了。通過這種方法,Java API class文件為底層主機提供了具有平台無關性、標准介面的Java程序。對Java程序而言,無論平台內部如何,Java API都會有同樣的表現和可預測的行為。正是由於在每個特定的主機平台上明確地實現了Java虛擬機和Java API,因此,Java程序自身就能夠成為具有平台無關性的程序。 Java API在Java安全性模型方面也有貢獻。當Java API的方法進行任何有潛在危險的操作(比如進行本地磁碟寫操作)之前,都會通過查詢訪問控制器來檢驗是否得到了授權。訪問控制器是一個類,該類用來執行棧檢驗,已決定是否允許某種操作。
Ⅶ 編譯程序的構造需要掌握哪些原理和技術
內容包括語言和文法、詞法分析、語法分析、語法制導翻譯、中間代碼生成、存儲管理、代碼優化和目標代碼生成。
Ⅷ 編譯技術的發展歷程
1954年至1957年間,IBM的John Backus帶領一個小組開發FORTRAN語言及其編譯器,使得上面的擔憂不必要了。
但由於當時處理中所涉及到的大多數程序設計語言的翻譯並不為人所掌握,所以這個項目的成功也伴隨著巨大的辛勞。
幾乎與此同時,人們也在開發著第一個編譯器,Noam Chomsky開始自然語言結構的研究。使得編譯器結構異常簡單,甚至還帶有了一些自動化。
Chomsky的研究導致了根據語言文法(grammar,結構規則)的難易程度以及識別它們所需的演算法來為語言分類。文法有4個層次:0型、1型、2型和3型文法,且其中的每一個都是其前者的專門化。2型(或上下文無關文法context-free grammar)是程序設計語言中最有用的,代表著程序設計語言結構的標准方式。
人們接著又深化了生成有效的目標代碼的方法,這就是最初的編譯器,它們被一直使用至今。人們通常將其誤稱為優化技術(optimization technique),但因其從未真正地得到過被優化了的目標代碼而僅僅改進了它的有效性,因此實際上應稱作代碼改進技術(code improvement technique)。
在70年代後期和80年代早期,大量的項目都關注於編譯器其他部分的生成自動化,這其中就包括了代碼生成。這些嘗試並未取得多少成功,這大概是因為操作太復雜而人們又對其不甚了解。
Ⅸ 編譯器的工作原理
編譯 是從源代碼(通常為高級語言)到能直接被計算機或虛擬機執行的目標代碼(通常為低級語言或機器語言)的翻譯過程。然而,也存在從低級語言到高級語言的編譯器,這類編譯器中用來從由高級語言生成的低級語言代碼重新生成高級語言代碼的又被叫做反編譯器。也有從一種高級語言生成另一種高級語言的編譯器,或者生成一種需要進一步處理的的中間代碼的編譯器(又叫級聯)。
典型的編譯器輸出是由包含入口點的名字和地址, 以及外部調用(到不在這個目標文件中的函數調用)的機器代碼所組成的目標文件。一組目標文件,不必是同一編譯器產生,但使用的編譯器必需採用同樣的輸出格式,可以鏈接在一起並生成可以由用戶直接執行的EXE,
所以我們電腦上的文件都是經過編譯後的文件。