⑴ 數字圖像處理的主要方法
數字圖像處理的工具可分為三大類:
第一類包括各種正交變換和圖像濾波等方法,其共同點是將圖像變換到其它域(如頻域)中進行處理(如濾波)後,再變換到原來的空間(域)中。
第二類方法是直接在空間域中處理圖像,它包括各種統計方法、微分方法及其它數學方法。
第三類是數學形態學運算,它不同於常用的頻域和空域的方法,是建立在積分幾何和隨機集合論的基礎上的運算。
由於被處理圖像的數據量非常大且許多運算在本質上是並行的,所以圖像並行處理結構和圖像並行處理演算法也是圖像處理中的主要研究方向。
(1)研究圖像的穩相演算法擴展閱讀
1、數字圖像處理包括內容:
圖像數字化;圖像變換;圖像增強;圖像恢復;圖像壓縮編碼;圖像分割;圖像分析與描述;圖像的識別分類。
2、數字圖像處理系統包括部分:
輸入(採集);存儲;輸出(顯示);通信;圖像處理與分析。
3、應用
圖像是人類獲取和交換信息的主要來源,因 此,圖像處理的應用領域必然涉及到人類生活和工作的方方面面。隨著人類活動范圍的不斷擴大,圖像處理的應用領域也將隨之不斷擴大。
主要應用於航天和航空、生物醫學工程、通信 工程、工業和工程、軍事公安、文化藝術、機器人視覺、視頻和多媒體系統、科學可視化、電子商務等方面。
⑵ 數字圖像處理的基本演算法及要解決的主要問題
圖像處理,是對圖像進行分析、加工、和處理,使其滿足視覺、心理以及其他要求的技術。圖像處理是信號處理在圖像域上的一個應用。目前大多數的圖像是以數字形式存儲,因而圖像處理很多情況下指數字圖像處理。此外,基於光學理論的處理方法依然佔有重要的地位。
圖像處理是信號處理的子類,另外與計算機科學、人工智慧等領域也有密切的關系。
傳統的一維信號處理的方法和概念很多仍然可以直接應用在圖像處理上,比如降噪、量化等。然而,圖像屬於二維信號,和一維信號相比,它有自己特殊的一面,處理的方式和角度也有所不同。
目錄
[隱藏]
* 1 解決方案
* 2 常用的信號處理技術
o 2.1 從一維信號處理擴展來的技術和概念
o 2.2 專用於二維(或更高維)的技術和概念
* 3 典型問題
* 4 應用
* 5 相關相近領域
* 6 參見
[編輯] 解決方案
幾十年前,圖像處理大多數由光學設備在模擬模式下進行。由於這些光學方法本身所具有的並行特性,至今他們仍然在很多應用領域佔有核心地位,例如 全息攝影。但是由於計算機速度的大幅度提高,這些技術正在迅速的被數字圖像處理方法所替代。
從通常意義上講,數字圖像處理技術更加普適、可靠和准確。比起模擬方法,它們也更容易實現。專用的硬體被用於數字圖像處理,例如,基於流水線的計算機體系結構在這方面取得了巨大的商業成功。今天,硬體解決方案被廣泛的用於視頻處理系統,但商業化的圖像處理任務基本上仍以軟體形式實現,運行在通用個人電腦上。
[編輯] 常用的信號處理技術
大多數用於一維信號處理的概念都有其在二維圖像信號領域的延伸,它們中的一部分在二維情形下變得十分復雜。同時圖像處理也具有自身一些新的概念,例如,連通性、旋轉不變性,等等。這些概念僅對二維或更高維的情況下才有非平凡的意義。
圖像處理中常用到快速傅立葉變換,因為它可以減小數據處理量和處理時間。
[編輯] 從一維信號處理擴展來的技術和概念
* 解析度(Image resolution|Resolution)
* 動態范圍(Dynamic range)
* 帶寬(Bandwidth)
* 濾波器設計(Filter (signal processing)|Filtering)
* 微分運算元(Differential operators)
* 邊緣檢測(Edge detection)
* Domain molation
* 降噪(Noise rection)
[編輯] 專用於二維(或更高維)的技術和概念
* 連通性(Connectedness|Connectivity)
* 旋轉不變性(Rotational invariance)
[編輯] 典型問題
* 幾何變換(geometric transformations):包括放大、縮小、旋轉等。
* 顏色處理(color):顏色空間的轉化、亮度以及對比度的調節、顏色修正等。
* 圖像合成(image composite):多個圖像的加、減、組合、拼接。
* 降噪(image denoising):研究各種針對二維圖像的去噪濾波器或者信號處理技術。
* 邊緣檢測(edge detection):進行邊緣或者其他局部特徵提取。
* 分割(image segmentation):依據不同標准,把二維圖像分割成不同區域。
* 圖像製作(image editing):和計算機圖形學有一定交叉。
* 圖像配准(image registration):比較或集成不同條件下獲取的圖像。
* 圖像增強(image enhancement):
* 圖像數字水印(image watermarking):研究圖像域的數據隱藏、加密、或認證。
* 圖像壓縮(image compression):研究圖像壓縮。
[編輯] 應用
* 攝影及印刷 (Photography and printing)
* 衛星圖像處理 (Satellite image processing)
* 醫學圖像處理 (Medical image processing)
* 面孔識別, 特徵識別 (Face detection, feature detection, face identification)
* 顯微圖像處理 (Microscope image processing)
* 汽車障礙識別 (Car barrier detection)
[編輯] 相關相近領域
* 分類(Classification)
* 特徵提取(Feature extraction)
* 模式識別(Pattern recognition)
* 投影(Projection)
* 多尺度信號分析(Multi-scale signal analysis)
* 離散餘弦變換(The Discrete Cosine Transform)
⑶ 圖像處理的演算法有哪些
圖像處理基本演算法操作從處理對象的多少可以有如下劃分:
一)點運算:處理點單元信息的運算
二)群運算:處理群單元 (若干個相鄰點的集合)的運算
1.二值化操作
圖像二值化是圖像處理中十分常見且重要的操作,它是將灰度圖像轉換為二值圖像或灰度圖像的過程。二值化操作有很多種,例如一般二值化、翻轉二值化、截斷二值化、置零二值化、置零翻轉二值化。
2.直方圖處理
直方圖是圖像處理中另一重要處理過程,它反映圖像中不同像素值的統計信息。從這句話我們可以了解到直方圖信息僅反映灰度統計信息,與像素具體位置沒有關系。這一重要特性在許多識別類演算法中直方圖處理起到關鍵作用。
3.模板卷積運算
模板運算是圖像處理中使用頻率相當高的一種運算,很多操作可以歸結為模板運算,例如平滑處理,濾波處理以及邊緣特徵提取處理等。這里需要說明的是模板運算所使用的模板通常說來就是NXN的矩陣(N一般為奇數如3,5,7,...),如果這個矩陣是對稱矩陣那麼這個模板也稱為卷積模板,如果不對稱則是一般的運算模板。我們通常使用的模板一般都是卷積模板。如邊緣提取中的Sobel運算元模板。
⑷ 計算圖像相似度的演算法有哪些
SIM = Structural SIMilarity(結構相似性),這是一種用來評測圖像質量的一種方法。由於人類視覺很容易從圖像中抽取出結構信息,因此計算兩幅圖像結構信息的相似性就可以用來作為一種檢測圖像質量的好壞.
首先結構信息不應該受到照明的影響,因此在計算結構信息時需要去掉亮度信息,即需要減掉圖像的均值;其次結構信息不應該受到圖像對比度的影響,因此計算結構信息時需要歸一化圖像的方差;最後我們就可以對圖像求取結構信息了,通常我們可以簡單地計算一下這兩幅處理後的圖像的相關系數.
然而圖像質量的好壞也受到亮度信息和對比度信息的制約,因此在計算圖像質量好壞時,在考慮結構信息的同時也需要考慮這兩者的影響.通常使用的計算方法如下,其中C1,C2,C3用來增加計算結果的穩定性:
2u(x)u(y) + C1
L(X,Y) = ------------------------ ,u(x), u(y)為圖像的均值
u(x)^2 + u(y)^2 + C1
2d(x)d(y) + C2
C(X,Y) = ------------------------,d(x),d(y)為圖像的方差
d(x)^2 + d(y)^2 + C2
d(x,y) + C3
S(X,Y) = ----------------------,d(x,y)為圖像x,y的協方差
d(x)d(y) + C3
而圖像質量Q = [L(X,Y)^a] x [C(X,Y)^b] x [S(X,Y)^c],其中a,b,c分別用來控制三個要素的重要性,為了計算方便可以均選擇為1,C1,C2,C3為比較小的數值,通常C1=(K1 x L)^2, C2=(K2 xL)^2, C3 = C2/2, K1 << 1, K2 << 1, L為像素的最大值(通常為255).
希望對你能有所幫助。
⑸ 圖像處理
第三章 圖像處理
輸出圖像的像素值僅僅由輸入圖像的像素值決定。
1.1 像素變換
根據像素產生輸出像素,注意,這里的像素可以是多副圖片的像素。
1.2 顏色變換
彩色圖像的各通道間具有很強的相關性。
1.3 合成和映射
將前景對象從圖像背景中提取出來,被稱為摳圖;將對象插入另一圖像被稱為合成。
1.4 直方圖均衡化
對比度和亮度參數可以提升圖像的外觀,為了自動調節這兩個參數,有兩種方法,一種方法是尋找圖像中最亮的值和最暗的值,將它們映射到純白和純黑,另一種方法是尋找圖像的像素平均值,將其作為像素的中間灰度值,然後充滿范圍盡量達到可顯示的值。
局部自適應直方圖均衡化,對於不同的區域採用不同的均衡化方法。缺點是會產生區塊效應,即塊的邊界處亮度不連續,為了消除這一效應,常採用移動窗口,或者在塊與塊之間的轉換函數進行平滑插值。
1.5 應用:色調調整
點運算元的常用領域是對照片的對比度和色調進行操作。
與點運算元相對應的鄰域運算元是根據選定像素及周圍的像素來決定該像素的 輸出。鄰域運算元不僅用於局部色調調整,還用於圖像平滑和銳化,圖像的去噪。
鄰域運算元的重要概念是卷積和相關,它們都是線性移不變運算元,滿足疊加原理和移位不變原理。
填塞,當卷積核超出圖像邊界時,會產生邊界效應。有多種填塞方法,0填塞,常數填塞,夾取填塞,重疊填塞,鏡像填塞,延長。
2.1 可分濾波器
如果一個卷積運算可以分解為一維行向量卷積和一維列向量卷積,則稱該卷積核可分離。2D核函數可以看作一個矩陣K,當且僅當K的第一個奇異值為0時,K可分離。
2.2 線性濾波器舉例
最簡單的濾波器是移動平均或方框濾波器,其次是雙線性濾波器(雙線性核),高斯濾波器(高斯核),以上均為低通核,模糊核,平滑核。對於這些核函數效果的度量採用傅里葉分析。還有Sobel運算元和角點運算元。
2.3 帶通和導向濾波器
Sobel運算元是帶方向的濾波器的近似,先用高斯核平滑圖像,再用方向導數(拉普拉斯運算元)作用於圖像,得到導向濾波器,導向具有潛在的局部性以及很好的尺度空間特性。導向濾波器常用來構造特徵描述子和邊緣檢測器,線性結構通常被認為是類似邊緣的。
區域求和表是指一定區域內所有像素值的和,又稱為積分圖像,它的有效計算方法是遞歸演算法(光柵掃描演算法),區域求和表用於對其他卷積核的近似,人臉檢測中的多尺度特徵,以及立體視覺中的差分平方和的計算。
遞歸濾波器稱為無限脈沖響應(IIR),有時用於二維距離函數和連通量的計算,也可計算大面積的平滑計算。
3.1 非線性濾波器
中值濾波可以去除散粒雜訊,它的另一個優點是保邊平滑,即在濾除高頻雜訊時,邊緣不容易被柔化。
雙邊濾波器思想的精髓在於,抑制與中心像素值差別較大的像素,而不是抑制固定百分比 的像素。在加權濾波器的基礎上,對權重系數進行了控制,即取決於定義域核(高斯核)和值域核(與中心像素值的相似度),兩者相乘得到雙邊濾波器核。
迭代自適應平滑核各項異性擴散。
3.2 形態學
非線性濾波常用於二值圖像處理,二值圖像中最常見的運算元是形態學運算元,將二值結構元素與二值圖像卷積,根據卷積結果的閾值選擇二值輸出,結構元素可以是任何形狀。
常見的形態學操作有膨脹,腐蝕,過半,開運算,閉運算。過半使銳利的角變得平滑,開運算和閉運算去除圖像中小的點和孔洞,並使圖像平滑。
3.3 距離變換
距離變換通過使用兩遍光柵掃描法,快速預計算到曲線或點集的距離,包括城街距離變換和歐氏距離變換。符號距離變換是基本距離變換的擴展,計算了所有像素到邊界像素的距離。
3.4 連通域
檢測圖像的連通量是半全局的圖像操作,連通量定義為具有相同輸入值的鄰接像素的區域,二值或多值圖像被分割成連通量形式後,對每個單獨區域計算統計量,面積,周長,質心,二階矩,可用於區域排序和區域匹配。
傅里葉變換用於對濾波器的頻域特徵進行分析,FFT能快速實現大尺度核的卷積。
思想:為了分析濾波器的頻率特徵,將一個已知頻率的正弦波通過濾波器,觀察正弦波變弱的程度。傅里葉變換可認為是輸入信號為正弦信號s(x),經過濾波器h(x)後,產生的輸出響應為正弦信號o(x)=s(x)*h(x),即兩者的卷積。傅里葉變換是對每個頻率的幅度和相位響應的簡單羅列。傅里葉變換不僅可以用於濾波器,還能用於信號和圖像。
傅里葉變換的性質:疊加,平移,反向,卷積,相關,乘,微分,定義域縮放,實值圖像,Parseval定理。
4.1 傅里葉變換對
常見的傅里葉變換對,連續的和離散的。方便進行傅里葉變換。
高頻成分將在降采樣中導致混疊。
4.2 二維傅里葉變換
為了對二維圖像及濾波器進行處理,提出了二維傅里葉變換,與一維傅里葉變換類似,只不過用向量代替標量,用向量內積代替乘法。
4.3 維納濾波器
傅里葉變換還可用於分析一類圖像整體的頻譜,維納濾波器應運而生。假定這類圖像位於隨機雜訊場中,每個頻率的期望幅度通過功率譜給出,信號功率譜捕獲了空間統計量的一階描述。維納濾波器適用於去除功率譜為P的圖像雜訊的濾波器。
維納濾波器的性質,對於低頻具有 單位增益,對於高頻,具有減弱的效果。
離散餘弦變換(DCT)常用於處理以塊為單位的圖像壓縮,它的計算方法是將以N為寬度的塊內的像素與一系列不同頻率的餘弦值進行點積來實現。
DCT變換的實質是對自然圖像中一些小的區域的最優KL分解(PCA主成分分析的近似),KL能有效對信號去相關。
小波演算法和DCT交疊變種能有效去除區塊效應。
4.4 應用:銳化,模糊,去噪
銳化和去雜訊能有效增強圖像,傳統的方法是採用線性濾波運算元,現在廣泛採用非線性濾波運算元,例如加權中值和雙邊濾波器,各向異性擴散和非局部均值,以及變分方法。
度量圖像去噪演算法效果時,一般採用峰值信噪比(PNSR),結構相似性(SSIM)索引。
迄今為止所研究的圖像變換輸出圖像大小均等於輸入圖像的大小,為了對不同解析度的圖像進行處理,比如,對小圖像進行插值使其與電腦的解析度相匹配,或者減小圖像的大小來加速演算法的執行或節省存儲空間和傳輸時間。
由於不知道處理圖像所需的解析度,故由多幅不同的圖像構建圖像金字塔,從而進行多尺度的識別和編輯操作。改變圖像解析度較好的濾波器是插值濾波器和降采樣濾波器。
5.1 插值
為將圖像變大到較高解析度,需要用插值核來卷積圖像,二次插值常用方法是雙線性插值,雙三次插值,窗函數。窗函數被認為是品質最高的插值器,因為它既可以保留低解析度圖像中的細節,又可以避免混疊。
5.2 降采樣
降采樣是為了降低圖像解析度,先用低通濾波器卷積圖像,避免混疊,再保持第r個樣例。常用的降采樣濾波器有線性濾波器,二次濾波器,三次濾波器,窗餘弦濾波器,QMF-9濾波器,JPEG2000濾波器。
5.3 多解析度表示
通過降采樣和插值演算法,能夠對圖像建立完整的圖像金字塔,金字塔可以加速由粗到精的搜索演算法,以便在不同的尺度上尋找物體和模式,或進行多解析度融合操作。
計算機視覺中最有名的金字塔是拉普拉斯金字塔,採用大小為2因子對原圖像進行模糊和二次采樣,並將它存儲在金字塔的下一級。
5.4 小波變換
小波是在空間域和頻率域都定位一個信號的濾波器,並且是在不同層次的尺度上定義的。小波可以進行多尺度有向濾波和去噪。與常規的金字塔相比,小波具有更好的方向選擇性,並提供了緊致框架。
提升小波被稱為第二代小波,很容易適應非常規采樣拓撲,還有導向可移位多尺度變換,它們的表述不僅是過完備的,而且是方向選擇的。
5.5 應用:圖像融合
拉普拉斯金字塔的應用,混合合成圖像。要產生混合圖像,每個原圖像先分解成它自己的拉普拉斯金字塔,之後每個帶被乘以一個大小正比於金字塔級別的平滑加權函數 。最簡單的方法是建立一個二值掩膜圖像,根據此圖像產生一個高斯金字塔,再將拉普拉斯金字塔和高斯掩膜,這兩個帶權金字塔的和產生最終圖像。
相對於點操作改變了圖像的值域范圍,幾何變換關注於改變圖像的定義域。原先採用的方法是全局參數化2D變換,之後的注意力將轉向基於網格的局部變形等更多通用變形。
6.1 參數變換
參數化變換對整幅圖像進行全局變換,其中變換的行為由少量的參數控制,反向卷繞或反向映射的性能優於前向卷繞,主要在於其能夠避免空洞和非整數位置重采樣的問題。而且可以用高質量的濾波器來控制混疊。
圖像卷繞問題可形式化為給定一個從目標像素x'到原像素x的映射來重采樣一副原圖像。類似的反向法應用場合有光流法預測光流以及矯正透鏡的徑向畸變。
重采樣過程的插值濾波器有,二次插值,三次插值,窗插值,二次插值追求速度,三次插值和窗插值追求視覺品質。
MIP映射是一種紋理映射的快速預濾波圖像工具。
MIP圖是標準的圖像金字塔,每層用一個高質量的濾波器濾波而不是低質量的近似,重采樣時,需要預估重采樣率r。
橢圓帶權平均濾波器(EWA),各向異性濾波,多通變換。
有向二位濾波和重采樣操作可以用一系列一維重采樣和剪切變換來近似,使用一系列一維變換的優點是它們比大的,不可分離的二位濾波核更有效。
6.2 基於網格扭曲
為了獲得更自由的局部變形,產生了網格卷繞。稀疏控制點,稠密集,有向直線分割,位移場的確定。
6.3 應用:基於特徵的形態學
卷繞常用於改變單幅圖像的外觀以形成動畫,也可用於多幅圖像的融合以產生強大的變形效果,在兩幅圖像之間進行簡單的漸隱漸顯會導致鬼影,但採用圖像卷繞建立了良好的對應關系,相應的特徵便會對齊。
用一些優化准則明確表達想要變換的目標,再找到或推斷出這個准則的解決辦法。正則化和變分法,構建一個描述解特性的連續全局能量函數,然後用稀疏線性系統或相關迭代方法找到最小能量解,貝葉斯統計學對產生輸入圖像的有雜訊的測量過程和關於解空間的先驗假設進行建模,通常用馬爾科夫隨機場進行編碼。常見示例有散列數據的表面插值,圖像去噪和缺失區域恢復,將圖像分為前景和背景區域。
7.1 正則化
正則化理論試圖用模型來擬合嚴重欠約束解空間的數據。即用一個平滑的表面穿過或是靠近一個測量數據點集合的問題。這樣的問題是病態的和不適定的。這樣由采樣數據點d(xi,yi)恢復完整圖像f(x,y)的問題被稱為逆問題。
為了定義平滑解,常在解空間上定義一個范數,對於一維函數,函數一階導數的平方進行積分,或對函數二階導數的平方進行積分,這種能量度量是泛函的樣例,是將函數映射到標量值的運算元,這種方法被稱為變分法,用於度量函數的變化(非平滑性)。
7.2 馬爾科夫隨機場
7.3 應用:圖像復原
⑹ 圖像識別演算法研究(用matlab實現的)(關於車牌識別的)至少兩種以上的演算法(要盡量詳細點的)
網上搜搜國外有一些demo程序,方便你入門。
圖像邊緣提取 常用的邊緣檢測運算元有梯度運算元、Roberts運算元、Sobel運算元、Prewitt運算元、Canny運算元 不過單用 效果不好 。
不知道你是什麼語言的車牌識別,建議用梯度運算元。
江蘇視圖科技專業圖像識別,圖片識別率高達98%以上。