1. 搜索演算法中,A演算法A*演算法的區別(急)
a*演算法:a*(a-star)演算法是一種靜態路網中求解最短路徑最有效的直接搜索方法。估價值與實際值越接近,估價函數取得就越好
a*
(a-star)演算法是一種靜態路網中求解最短路最有效的直接搜索方法。
注意是最有效的直接搜索演算法。之後涌現了很多預處理演算法(alt,ch,hl等等),在線查詢效率是a*演算法的數千甚至上萬倍。
公式表示為:
f(n)=g(n)+h(n),
其中
f(n)
是從初始點經由節點n到目標點的估價函數,
g(n)
是在狀態空間中從初始節點到n節點的實際代價,
h(n)
是從n到目標節點最佳路徑的估計代價。
保證找到最短路徑(最優解的)條件,關鍵在於估價函數f(n)的選取:
估價值h(n)<=
n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。並且如果h(n)=d(n),即距離估計h(n)等於最短距離,那麼搜索將嚴格沿著最短路徑進行,
此時的搜索效率是最高的。
如果
估價值>實際值,搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解。
2. 人工智慧 A*演算法原理
A 演算法是啟發式演算法重要的一種,主要是用於在兩點之間選擇一個最優路徑,而A 的實現也是通過一個估值函數
上圖中這個熊到樹葉的 曼哈頓距離 就是藍色線所表示的距離,這其中不考慮障礙物,假如上圖每一個方格長度為1,那麼此時的熊的曼哈頓距離就為9.
起點(X1,Y1),終點(X2,Y2),H=|X2-X1|+|Y2-Y1|
我們也可以通過幾何坐標點來算出曼哈頓距離,還是以上圖為例,左下角為(0,0)點,熊的位置為(1,4),樹葉的位置為(7,1),那麼H=|7-1|+|1-4|=9。
還是以上圖為例,比如剛開始熊位置我們會加入到CLOSE列表中,而熊四周它可以移動到的點位我們會加入到OPEN列表中,並對熊四周的8個節點進行F=G+H這樣的估值運算,然後在這8個節點中選中一個F值為最小的節點,然後把再把這個節點從OPEN列表中刪除,加入到Close列表中,從接著在對這個節點的四周8個節點進行一個估值運算,再接著依次運算,這樣說大家可能不是太理解,我會在下邊做詳細解釋。
從起點到終點,我們通過A星演算法來找出最優路徑
我們把每一個方格的長度定義為1,那從起始點到5位置的代價就是1,到3的代價為1.41,定義好了我們接著看上圖,接著運算
第一步我們會把起始點四周的點加入OPEN列表中然後進行一個估值運算,運算結果如上圖,這其中大家看到一個小箭頭都指向了起點,這個箭頭就是指向父節點,而open列表的G值都是根據這個進行計算的,意思就是我從上一個父節點運行到此處時所需要的總代價,如果指向不一樣可能G值就不一樣,上圖中我們經過計算發現1點F值是7.41是最小的,那我們就選中這個點,並把1點從OPEN列表中刪除,加入到CLOSE列表中,但是我們在往下運算的時候發現1點的四周,2點,3點和起始點這三個要怎麼處理,首先起始點已經加入到了CLOSE,他就不需要再進行這種運算,這就是CLOSE列表的作用,而2點和3點我們也可以對他進行運算,2點的運算,我們從1移動到2點的時候,他需要的代價也就是G值會變成2.41,而H值是不會變的F=2.41+7=9.41,這個值我們發現大於原來的的F值,那我們就不能對他進行改變(把父節點指向1,把F值改為9.41,因為我們一直追求的是F值最小化),3點也同理。
在對1點四周進行運算後整個OPEN列表中有兩個點2點和3點的F值都是7.41,此時我們系統就可能隨機選擇一個點然後進行下一步運算,現在我們選中的是3點,然後對3點的四周進行運算,結果是四周的OPEN點位如果把父節點指向3點值時F值都比原來的大,所以不發生改變。我們在看整個OPEN列表中,也就2點的7.41值是最小的,那我們就選中2點接著運算。
我們在上一部運算中選中的是1點,上圖沒有把2點加入OPEN列表,因為有障礙物的阻擋從1點他移動不到2點,所以沒有把2點加入到OPEN列表中,整個OPEN列表中3的F=8是最小的,我們就選中3,我們對3點四周進行運算是我們發現4點經過計算G=1+1=2,F=2+6=8所以此時4點要進行改變,F變為8並把箭頭指向3點(就是把4點的父節點變為3),如下圖
我們就按照這種方法一直進行運算,最後 的運算結果如下圖
而我們通過目標點位根據箭頭(父節點),一步一步向前尋找最後我們發現了一條指向起點的路徑,這個就是我們所需要的最優路徑。 如下圖的白色選中區域
但是我們還要注意幾點
最優路徑有2個
這是我對A*演算法的一些理解,有些地方可能有BUG,歡迎大家指出,共同學習。
3. 深度優先搜索和廣度優先搜索、A星演算法三種演算法的區別和聯系
1、何謂啟發式搜索演算法
在說它之前先提提狀態空間搜索.狀態空間搜索,如果按專業點的說法就是將問題求解過程表現為從初始狀態到目標狀態尋找這個路徑的過程.通俗點說,就是 在解一個問題時,找到一條解題的過程可以從求解的開始到問題的結果(好象並不通俗哦).由於求解問題的過程中分枝有很多,定性,不完備性造成的,使得求解的路徑很多這就構成了一個圖,我們說這個圖就是狀態空間.問題的求解實際上就是在這個圖中找到一條路徑可以從開始到結果.這個尋找的過程就是狀態空間搜索.
常用的狀態空間搜索有深度優先和廣度優先.廣度優先是從初始狀態一層一層向下找,直到找到目標為止.深度優先是按照一定的順序前查找完一個分支,再查找另一個分支,以至找到目標為止.這兩種演算法在數據結構書中都有描述,可以參看這些書得到更詳細的解釋.
前面說的廣度和深度優先搜索有一個很大的缺陷就是他們都是在一個給定的狀態空間中窮舉.這在狀態空間不大的情況下是很合適的演算法,可是當狀態空間十分大,且不預測的情況下就不可取了.他的效率實在太低,甚至不可完成.在這里就要用到啟發式搜索了.
啟發式搜索就是在狀態空間中的搜索對每一個搜索的位置進行評估,得到最好的位置,再從這個位置進行搜索直到目標.這樣可以省略大量無畏的搜索路徑,提 到了效率.在啟發式搜索中,對位置的估價是十分重要的.採用了不同的估價可以有不同的效果.我們先看看估價是如何表示的.
啟發中的估價是用估價函數表示的,如:
f(n) = g(n) + h(n)
其中f(n) 是節點n的估價函數,g(n)實在狀態空間中從初始節點到n節點的實際代價,h(n)是從n到目標節點最佳路徑的估計代價.在這里主要是h(n)體現了搜 索的啟發信息,因為g(n)是已知的.如果說詳細點,g(n)代表了搜索的廣度的優先趨勢.但是當h(n) >> g(n)時,可以省略g(n),而提高效率.這些就深了,不懂也不影響啦!我們繼續看看何謂A*演算法.
2、初識A*演算法
啟發式搜索其實有很多的演算法,比如:局部擇優搜索法、最好優先搜索法等等.當然A*也是.這些演算法都使用了啟發函數,但在具體的選取最佳搜索節點時的 策略不同.象局部擇優搜索法,就是在搜索的過程中選取「最佳節點」後舍棄其他的兄弟節點,父親節點,而一直得搜索下去.這種搜索的結果很明顯,由於舍棄了 其他的節點,可能也把最好的節點都舍棄了,因為求解的最佳節點只是在該階段的最佳並不一定是全局的最佳.最好優先就聰明多了,他在搜索時,便沒有舍棄節點 (除非該節點是死節點),在每一步的估價中都把當前的節點和以前的節點的估價值比較得到一個「最佳的節點」.這樣可以有效的防止「最佳節點」的丟失.那麼 A*演算法又是一種什麼樣的演算法呢?其實A*演算法也是一種最好優先的演算法.只不過要加上一些約束條件罷了.由於在一些問題求解時,我們希望能夠求解出狀態空 間搜索的最短路徑,也就是用最快的方法求解問題,A*就是干這種事情的!我們先下個定義,如果一個估價函數可以找出最短的路徑,我們稱之為可採納性.A* 演算法是一個可採納的最好優先演算法.A*演算法的估價函數可表示為:
f'(n) = g'(n) + h'(n)
這里,f'(n)是估價函數,g'(n)是起點到終點的最短路徑值,h'(n)是n到目標的最斷路經的啟發值.由於這個f'(n)其實是無法預先知道 的,所以我們用前面的估價函數f(n)做近似.g(n)代替g'(n),但 g(n)>=g'(n)才可(大多數情況下都是滿足的,可以不用考慮),h(n)代替h'(n),但h(n)
4. 什麼是A搜索演算法
A*搜索演算法,俗稱A星演算法,作為啟發式搜索演算法中的一種,這是一種在圖形平面上,有多個節點的路徑,求出最低通過成本的演算法。常用於游戲中的NPC的移動計算,或線上游戲的BOT的移動計算上。該演算法像Dijkstra演算法一樣,可以找到一條最短路徑;也像BFS一樣,進行啟發式的搜索。
5. 人工智慧要考試了 還有好多不會 請教有哪五種常用的啟發式演算法A演算法和A*演算法是嗎
都算的。
其它的常見演算法還有:
模擬退火演算法(Simulated Annealing Algorithm);
蟻群演算法(Ant Algorithm);
禁忌搜索演算法(Tabu Search Algorithm);
神經網路演算法(Neural Network Algorithm);
遺傳演算法(Genetic Algorithm)
希望對你有幫助^^
6. 爬山演算法 與A演算法有什麼不同
爬山演算法從當前的節點開始,和周圍的鄰居節點的值進行比較。
A*把所有節點分成2組,一組已訪問,一組未訪問,然後選擇其中最優點加入已訪問組。
爬山演算法速度比A*快,但會舍棄部分最優解。