① 濾波在數學上是如何實現的
在單片機進行數據採集時,會遇到數據的隨機誤差,隨機誤差是由隨機干擾引起的,其特點是在相同條件下測量同一量時,其大小和符號會現無規則的變化而無法預測,但多次測量的結果符合統計規律。為克服隨機干擾引起的誤差,硬體上可採用濾波技術,軟體上可採用軟體演算法實現數字濾波。濾波演算法往往是系統測控演算法的一個重要組成部分,實時性很強。
採用數字濾波演算法克服隨機干擾的誤差具有以下優點:
1、數字濾波無需其他的硬體成本,只用一個計算過程,可靠性高,不存在阻抗匹配問題。尤其是數字濾波可以對頻率很低的信號進行濾波,這是模擬濾波器做不到的。
2、數字濾波使用軟體演算法實現,多輸入通道可共用一個濾波程序,降低系統開支。
3、只要適當改變濾波器的濾波程序或運算,就能方便地改變其濾波特性,這對於濾除低頻干擾和隨機信號會有較大的效果。
4、在單片機系統中常用的濾波演算法有限幅濾波法、中值濾波法、算術平均濾波法、加權平均濾波法、滑動平均濾波等。
(1)限幅濾波演算法
該運算的過程中將兩次相鄰的采樣相減,求出其增量,然後將增量的絕對值,與兩次采樣允許的最大差值A進行比較。A的大小由被測對象的具體情況而定,如果小於或等於允許的最大差值,則本次采樣有效;否則取上次采樣值作為本次數據的樣本。
演算法的程序代碼如下:
#defineA //允許的最大差值
chardata; //上一次的數據
char filter()
{
chardatanew; //新數據變數
datanew=get_data(); //獲得新數據變數
if((datanew-data)>A||(data-datanew>A))
return data;
else
returndatanew;
}
說明:限幅濾波法主要用於處理變化較為緩慢的數據,如溫度、物體的位置等。使用時,關鍵要選取合適的門限制A。通常這可由經驗數據獲得,必要時可通過實驗得到。
(2)中值濾波演算法
該運算的過程是對某一參數連續采樣N次(N一般為奇數),然後把N次采樣的值按從小到大排列,再取中間值作為本次采樣值,整個過程實際上是一個序列排序的過程。
演算法的程序代碼如下:
#define N11 //定義獲得的數據個數
char filter()
{
charvalue_buff[N]; //定義存儲數據的數組
char count,i,j,temp;
for(count=0;count
{
value_buf[count]=get_data();
delay(); //如果採集數據比較慢,那麼就需要延時或中斷
}
for(j=0;j
{
for(value_buff[i]>value_buff[i+1]
{
temp=value_buff[i];
value_buff[i]=value_buff[i+1];
value_buff[i+1]=temp;
}
}
returnvalue_buff[(N-1)/2];
}
說明:中值濾波比較適用於去掉由偶然因素引起的波動和采樣器不穩定而引起的脈動干擾。若被測量值變化比較慢,採用中值濾波法效果會比較好,但如果數據變化比較快,則不宜採用此方法。
(3)算術平均濾波演算法
該演算法的基本原理很簡單,就是連續取N次采樣值後進行算術平均。
演算法的程序代碼如下:
char filter()
{
int sum=0;
for(count=0;count
{
sum+=get_data();
delay():
}
return (char)(sum/N);
}
說明:算術平均濾波演算法適用於對具有隨機干擾的信號進行濾波。這種信號的特點是有一個平均值,信號在某一數值附近上下波動。信號的平均平滑程度完全到決於N值。當N較大時,平滑度高,靈敏度低;當N較小時,平滑度低,但靈敏度高。為了方便求平均值,N一般取4、8、16、32之類的2的整數冪,以便在程序中用移位操作來代替除法。
(4)加權平均濾波演算法
由於前面所說的「算術平均濾波演算法」存在平滑度和靈敏度之間的矛盾。為了協調平滑度和靈敏度之間的關系,可採用加權平均濾波。它的原理是對連續N次采樣值分別乘上不同的加權系數之後再求累加,加權系數一般先小後大,以突出後面若干采樣的效果,加強系統對參數變化趨勢的認識。各個加權系數均小於1的小數,且滿足總和等於1的結束條件。這樣加權運算之後的累加和即為有效采樣值。其中加權平均數字濾波的數學模型是:
式中:D為N個采樣值的加權平均值:XN-i為第N-i次采樣值;N為采樣次數;Ci為加權系數。加權系數Ci體現了各種采樣值在平均值中所佔的比例。一般來說采樣次數越靠後,取的比例越大,這樣可增加新采樣在平均值中所佔的比重。加權平均值濾波法可突出一部分信號抵制另一部分信號,以提高采樣值變化的靈敏度。
樣常式序代碼如下:
char codejq[N]={1,2,3,4,5,6,7,8,9,10,11,12}; //code數組為加權系數表,存在程序存儲區
char codesum_jq=1+2+3+4+5+6+7+8+9+10+11+12;
char filter()
{
char count;
char value_buff[N];
int sum=0;
for(count=0;count
{
value_buff[count]=get_data();
delay();
}
for(count=0;count
sum+=value_buff[count]*jq[count];
return(char)(sum/sum_jq);
}
(5)滑動平均濾波演算法
以上介紹和各種平均濾波演算法有一個共同點,即每獲取一個有效采樣值必須連續進行若干次采樣,當采速度慢時,系統的實時得不到保證。這里介紹的滑動平均濾波演算法只採樣一次,將一次采樣值和過去的若干次采樣值一起求平均,得到的有效采樣值即可投入使用。如果取N個采樣值求平均,存儲區中必須開辟N個數據的暫存區。每新採集一個數據便存入暫存區中,同時去掉一個最老數據,保存這N個數據始終是最新更新的數據。採用環型隊列結構可以方便地實現這種數據存放方式。
程序代碼如下:
char value_buff[N];
char i=0;
char filter()
{
char count;
int sum=0;
value_buff[i++]=get_data();
if(i==N)
i=0;
for(count=0;count
sum=value_buff[count];
return (char)(sum/N);
}
(6)低通濾波
將普通硬體RC低通濾波器的微分方程用差分方程來表求,變可以採用軟體演算法來模擬硬體濾波的功能,經推導,低通濾波演算法如下:
Yn=a* Xn+(1-a) *Yn-1
式中 Xn——本次采樣值
Yn-1——上次的濾波輸出值;
,a——濾波系數,其值通常遠小於1;
Yn——本次濾波的輸出值。
由上式可以看出,本次濾波的輸出值主要取決於上次濾波的輸出值(注意不是上次的采樣值,這和加權平均濾波是有本質區別的),本次采樣值對濾波輸出的貢獻是比較小的,但多少有些修正作用,這種演算法便模擬了具體有教大慣性的低通濾波器功能。濾波演算法的截止頻率可用以下式計算:
fL=a/2Pit pi為圓周率3.14…
式中 a——濾波系數;
, t——采樣間隔時間;
例如:當t=0.5s(即每秒2次),a=1/32時;
fL=(1/32)/(2*3.14*0.5)=0.01Hz
當目標參數為變化很慢的物理量時,這是很有效的。另外一方面,它不能濾除高於1/2采樣頻率的干攪信號,本例中采樣頻率為2Hz,故對1Hz以上的干攪信號應採用其他方式濾除,
低通濾波演算法程序於加權平均濾波相似,但加權系數只有兩個:a和1-a。為計算方便,a取一整數,1-a用256-a,來代替,計算結果捨去最低位元組即可,因為只有兩項,a和1-a,均以立即數的形式編入程序中,不另外設表格。雖然采樣值為單元位元組(8位A/D)。為保證運算精度,濾波輸出值用雙位元組表示,其中一個位元組整數,一位元組小數,否則有可能因為每次捨去尾數而使輸出不會變化。
設Yn-1存放在30H(整數)和31H(小數)兩單元中,Yn存放在32H(整數)和33H(小數)中。濾波程序如下:
雖千萬里,吾往矣。
② 說明算術平均濾波,加權平均濾波和滑動平均濾波之間的區別以及各自的用途
clear clc x=randn(1,100); %x為要濾波的信號 m=5;%表示平滑濾波窗長度,這是長度為奇數的情況 %前m/2,最後m/2個點沒濾波,設為原來的值就行 for i=1:length(x)-m+1 y(i+(m-1)/2)=sum(x(i:i+m-1))/m; end figure(1); plot(x,'r');hold on;plot(y,'g');hold off; 這是最簡單的,不知道你需要基於什麼演算法的平滑濾波!有重心法的,算術滑動平均的,變參數雙指數平滑方法,還有用插值的方式去平滑的
③ 數字濾波器作用是什麼,在信號分析的什麼環節會用到
數字濾波器由數字乘法器、加法器和延時單元組成的一種演算法或裝置。數字濾波器的功能是對輸入離散信號的數字代碼進行運算處理,以達到改變信號頻譜的目的。
參考資料:http://ke..com/view/163224.htm
④ 均值濾波適用於處理什麼樣的雜訊
均值濾波,適用於去除通過掃描得到的圖像中的顆粒雜訊。
均值濾波是典型的線性濾波演算法,它是指在圖像上對目標像素給一個模板,該模板包括了其周圍的臨近像素(以目標象素為中心的周圍8個像素,構成一個濾波模板,即去掉目標像素本身),再用模板中的全體像素的平均值來代替原來像素值。
這種方法保留了大部分包含信號的小波系數,因此可以較好地保持圖像細節。小波分析進行圖像去噪主要有3個方面:
(1)對圖像信號進行小波分解。
(2)對經過層次分解後的高頻系數進行閾值量化。
(3)利用二維小波重構圖像信號。
(4)濾波演算法作用擴展閱讀:
均值濾波也稱為線性濾波,其採用的主要方法為鄰域平均法。線性濾波的基本原理是用均值代替原圖像中的各個像素值,即對待處理的當前像素點(x,y),選擇一個模板。
該模板由其近鄰的若干像素組成,求模板中所有像素的均值,再把該均值賦予當前像素點(x,y),作為處理後圖像在該點上的灰度個g(x,y),即個g(x,y)=1/m ∑f(x,y) m為該模板中包含當前像素在內的像素總個數。
均值濾波本身存在著固有的缺陷,即它不能很好地保護圖像細節,在圖像去噪的同時也破壞了圖像的細節部分,從而使圖像變得模糊,不能很好地去除雜訊點。
⑤ 什麼是濾波演算法
卡爾曼濾波器(Kalman Filter)是一個最優化自回歸數據處理演算法(optimal recursive data processing algorithm)。對於解決很大部分的問題,他是最優,效率最高甚至是最有用的。他的廣泛應用已經超過30年,包括機器人導航,控制,感測器數據融合甚至在軍事方面的雷達系統以及導彈追蹤等等。近年來更被應用於計算機圖像處理,例如頭臉識別,圖像分割,圖像邊緣檢測等等。
最佳線性濾波理論起源於40年代美國科學家Wiener和前蘇聯科學家Kолмогоров等人的研究工作,後人統稱為維納濾波理論。從理論上說,維納濾波的最大缺點是必須用到無限過去的數據,不適用於實時處理。為了克服這一缺點,60年代Kalman把狀態空間模型引入濾波理論,並導出了一套遞推估計演算法,後人稱之為卡爾曼濾波理論。卡爾曼濾波是以最小均方誤差為估計的最佳准則,來尋求一套遞推估計的演算法,其基本思想是:採用信號與雜訊的狀態空間模型,利用前一時刻地估計值和現時刻的觀測值來更新對狀態變數的估計,求出現時刻的估計值。它適合於實時處理和計算機運算。
現設線性時變系統的離散狀態防城和觀測方程為:
X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)
Y(k) = H(k)·X(k)+N(k)
其中
X(k)和Y(k)分別是k時刻的狀態矢量和觀測矢量
F(k,k-1)為狀態轉移矩陣
U(k)為k時刻動態雜訊
T(k,k-1)為系統控制矩陣
H(k)為k時刻觀測矩陣
N(k)為k時刻觀測雜訊
則卡爾曼濾波的演算法流程為:
預估計X(k)^= F(k,k-1)·X(k-1)
計算預估計協方差矩陣
C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'
Q(k) = U(k)×U(k)'
計算卡爾曼增益矩陣
K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)
R(k) = N(k)×N(k)'
更新估計
X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]
計算更新後估計協防差矩陣
C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'
X(k+1) = X(k)~
C(k+1) = C(k)~
⑥ 卡爾曼濾波器的作用
卡爾曼濾波器是一個最優化自回歸數據處理演算法,應用廣泛。使用卡爾曼濾波器可以組合GNSS和INS的測試結果,根據含有雜訊的物體感測器測量值,預測出物體的位置坐標和速度。它具有很強的魯棒性,即使觀察到物體的位置有誤差,也可以根據物體的運動規律預測一個位置,再結合當前的獲取的位置信息,減少感測器誤差,增強位置測量的連續性和穩定性,更加准確地輸出載體的位置。
⑦ 卡爾曼濾波演算法的功能是什麼
卡爾曼濾波是用來進行數據濾波用的,就是把含雜訊的數據進行處理之後得出相對真值。卡爾曼濾波也可進行系統辨識。卡爾曼濾波一種利用線性系統狀態方程,通過系統輸入輸出觀測數據,對系統狀態進行最優估計的演算法。由於觀測數據中包括系統中的雜訊和干擾的影響,所以最優估計也可看作是濾波過程。
⑧ 在慣性導航和gps組合導航系統中,卡爾曼濾波起到什麼作用
GPS導航主要是全球定位導航系統,屬於無線電導航方式,而慣性導航是屬於自主式的導航方式,主要由陀螺儀測量三軸角速度,加速度計測量三軸線速度,但是慣性導航的缺點就是定位精度會隨時間增長,GPS導航雖然定位誤差小,但是容易受到外在環境干擾,因此現在多採用兩種組合的導航方式。關於你提問的在GPS導航儀中運用慣性導航技術,應該是將GPS作為主要導航手段,這個時候慣性導航就是為了輔助GPS定位服務的,GPS的數據更新率低,對於高動態情況下,不能實施跟蹤載體運動,採用慣性導航可以提高數據更新速度;同時在GPS丟星或者受到遮擋時,採用慣性導航可以再短期內保持較高的定位精度;還有就是通過反饋,慣性導航定位與GPS導航組合可以縮短GPS的定位時間。