㈠ 指數冪運演算法則 是什麼
1.同底數冪的乘法:
法則口訣
同底數冪的乘法:底數不變,指數相加冪的乘方;
同底數冪的除法:底數不變,指數相減冪的乘方;
冪的指數乘方:等於各因數分別乘方的積商的乘方
分式乘方:分子分母分別乘方,指數不變。
㈡ 冪數指數的運演算法則是什麼
乘法
1、同底數冪相乘,底數不變,指數相加。
2、冪的乘方,底數不變,指數相乘。
3、積的乘方,等於把積的每一個因式分別乘方,再把所得的冪相乘。
4、分式乘方,分子分母各自乘方。
除法
1、同底數冪相除,底數不變,指數相減。
2、規定:
(1)任何不等於零的數的零次冪都等於1。
(2)任何不等於零的數的-p(p是正整數)次冪,等於這個數的p次冪的倒數。
運演算法則記憶口決
非零數的零次冪,常值為 1不糊塗。
負整數的指數冪,指數轉正求倒數。
看到分數指數冪,想到底數必非負。
乘方指數是分子,根指數要當分母。
有理數的指數冪,運演算法則要記住。
指數加減底不變,同底數冪相乘除。
指數相乘底不變,冪的乘方要清楚。
積商乘方原指數,換底乘方再乘除。
㈢ 冪的運演算法則
冪的運演算法則如下:
1、同底數冪的乘法;
2、同底數冪的除法;
3、冪的乘方與積的乘方。
同底數冪的乘法:a·a·a=a,在整個式子中字母m、n、p均為正整數,不然的話整個式子是沒有辦法成立的。
同底數冪的除法:同底數冪的除法分為三種,第一種同底數冪的除法a÷a=a(),其中a不等於0,m和n均為正整數,而且m大於n。零指數a=1,其中a不等於0。最後就是負整數指數冪a= (其中a≠0, p是正整數),若是當a=0時沒有意義的話,則0,0都是沒有意義的。
冪的乘方與積的乘方:冪的乘方為(a)=a(),和積的乘方(ab)=ab,以上就是冪的運演算法則的全部演算法了。
冪的運算注意事項
1、冪的底數a可以是具體的數也可以是多項式。
2、積的乘方(ab)^n=a^nb^n,(n為正整數)運用法則時注意:積的乘方等於將積的每個因式分別乘方(即轉化成若干個冪的乘方),再把所得的冪相乘。積的乘方可推廣到3個以上因式的積的乘方。
3、在做題的時候要看清楚是同底數冪相乘的時候底數不變的情況下指數相加,而同底數冪相除的情況下,底數不變指數是需要相減的,而冪的乘方底數不變,指數相乘,而指數冪相乘,指數不變,底數相乘,通指數冪相乘指數不變,底數相除。