導航:首頁 > 源碼編譯 > 城市視覺演算法

城市視覺演算法

發布時間:2023-07-01 16:49:08

1. 圖像視覺演算法(深度學習)和SLAM演算法哪個更有前景啊

vSALM(Visual SLAM)能夠在跟蹤攝像機(用於AR的手持或者頭盔,或者裝備在機器人上)位置和方位的同時構建三維地圖. SLAM演算法與ConvNets和深度學習是互補的。SLAM關注幾何問題,而深度學習主要關注識別問題。如果你想讓機器人走到冰箱面前而不撞到牆,就用SLAM。如果你想讓機器人識別冰箱里的物品,就用ConvNets。http://openmvg.readthedocs.io/en/latest/

SLAM相當於實時版本的SFM(Structure From Motion)。vSLAM使用攝像機,放棄了昂貴的激光感測器和慣性感測器(IMU)。單目SLAM使用單個相機,而非單目SLAM通常使用預先標定好的固定基線的立體攝像機。SLAM是基於幾何方法的計算機視覺的一個主要的例子。事實上,CMU(卡內基梅隴大學)的機器人研究機構劃分了兩個課程:基於學習方法的視覺和基於幾何方法的視覺。

SFM vs vSLAM

SFM和SLAM解決的是相似的問題,但SFM是以傳統的離線的方式來實現的。SLAM慢慢地朝著低功耗,實時和單個RGB相機模式發展。下面是一些流行的開源SFM軟體庫。

2. 視覺定位和視覺檢測技術有哪些共同點和不同點

視覺定位,視覺檢測,視覺測量都屬於機器視覺的領域。
首先來說共同點,同樣使用視覺演算法,因此在圖像預處理,圖像形態學,Blob分析,邊緣提取等方面的演算法以及思路是一樣的。大部分的視覺演算法庫提供的視覺演算法函數都是可以被調用的。
不同點,視覺定位類項目側重於精度,更多的需要配合自動化設備,比如說機器人,軸組等,在圖像處理後通過手眼標定演算法將像素坐標系轉化成其他的坐標,有時配合激光感測器等實現坐標系的統一。在應用場景方面,有2維定位抓取,3維無序抓取等。在移動機器人領域,視覺定位類項目又分為視覺SLAM等。綜上,視覺定位項目側重於多重技術的結合。視覺檢測技術側重於穩定性,演算法方面,結合深度學習,預處理演算法,圖像增強等實現對物體表面的缺陷檢測,字元識別等,在計算機視覺領域,有OCR字元檢測,人臉識別,自動駕駛等等。綜上,視覺檢測技術更側重於視覺演算法本身的深挖。

3. 計算機視覺領域主流的演算法和方向有哪些

人工智慧是當下很火熱的話題,其與大數據的完美結合應用於多個場景,極大的方便了人類的生活。而人工智慧又包含深度學習和機器學習兩方面的內容。深度學習又以計算機視覺和自然語言處理兩個方向發展的最好,最火熱。大家對於自然語言處理的接觸可能不是很多,但是說起計算機視覺,一定能夠馬上明白,因為我們每天接觸的刷臉支付等手段就會和計算機視覺掛鉤。可以說計算機視覺的應用最為廣泛。

目標跟蹤,就是在某種場景下跟蹤特定對象的過程,在無人駕駛領域中有很重要的應用。目前較為流行的目標跟蹤演算法是基於堆疊自動編碼器的DLT。語義分割,則是將圖像分為像素組,再進行標記和分類。目前的主流演算法都使用完全卷積網路的框架。實例分割,是指將不同類型的實例分類,比如用4種不同顏色來標記4隻貓。目前用於實例分割的主流演算法是Mask R-CNN。

4. 視覺演算法和圖像演算法的區別

兩者其實差別都不算很大,從專業本身來說,模式識別研發就比如汽車的車牌,你怎麼去識別,圖像演算法主要研究目的就是比如車牌你怎麼讓他更清楚地被你採集後得到有用的信息,還原圖片的原來面目等。都是演算法類的研究,當然演算法也是離不開程序的,如果你對軟體不敢新區,那麼這兩個專業都不是適合你。

5. slam演算法是什麼

SLAM是Simultaneous localization and mapping縮寫,意為「同步定位與建圖」,主要用於解決機器人在未知環境運動時的定位與地圖構建問題。

Simultaneous Localization and Mapping (SLAM)原本是Robotics領域用來做機器人定位的,最早的SLAM演算法其實是沒有用視覺camera的(Robotics領域一般用Laser Range Finder來做SLAM)。

SLAM對實時性要求比較高,而要做到比較精確、穩定、可靠、適合多種場景的方案一般計算量相對較大,目前移動式設備的計算能力還不足夠支撐這么大的計算量,為了達到實時性能,往往需要在精確度和穩定性上做些犧牲。

因此在具體的應用中,往往需要根據移動設備所具有的感測器組合、計算能力、用戶場景等,選擇和深度定製合適的SLAM演算法。比如,無人駕駛汽車和手機端AR類應用的SLAM演算法就非常不同。

SLAM的典型應用領域

機器人定位導航領域:地圖建模。SLAM可以輔助機器人執行路徑規劃、自主探索、導航等任務。國內的科沃斯、塔米以及最新面世的嵐豹掃地機器人都可以通過用SLAM演算法結合激光雷達或者攝像頭的方法,讓掃地機高效繪制室內地圖,智能分析和規劃掃地環境,從而成功讓自己步入了智能導航的陣列。

VR/AR方面:輔助增強視覺效果。SLAM技術能夠構建視覺效果更為真實的地圖,從而針對當前視角渲染虛擬物體的疊加效果,使之更真實沒有違和感。VR/AR代表性產品中微軟Hololens、谷歌ProjectTango以及MagicLeap都應用了SLAM作為視覺增強手段。

無人機領域:地圖建模。SLAM可以快速構建局部3D地圖,並與地理信息系統(GIS)、視覺對象識別技術相結合,可以輔助無人機識別路障並自動避障規劃路徑,曾經刷爆美國朋友圈的Hovercamera無人機,就應用到了SLAM技術。

無人駕駛領域:視覺里程計。SLAM技術可以提供視覺里程計功能,並與GPS等其他定位方式相融合,從而滿足無人駕駛精準定位的需求。例如,應用了基於激光雷達技術Google無人駕駛車以及牛津大學MobileRoboticsGroup11年改裝的無人駕駛汽車野貓(Wildcat)均已成功路測。

以上內容參考:slam路徑規劃演算法 - CSDN

閱讀全文

與城市視覺演算法相關的資料

熱點內容
dvd光碟存儲漢子演算法 瀏覽:757
蘋果郵件無法連接伺服器地址 瀏覽:962
phpffmpeg轉碼 瀏覽:671
長沙好玩的解壓項目 瀏覽:144
專屬學情分析報告是什麼app 瀏覽:564
php工程部署 瀏覽:833
android全屏透明 瀏覽:737
阿里雲伺服器已開通怎麼辦 瀏覽:803
光遇為什麼登錄時伺服器已滿 瀏覽:302
PDF分析 瀏覽:484
h3c光纖全工半全工設置命令 瀏覽:143
公司法pdf下載 瀏覽:381
linuxmarkdown 瀏覽:350
華為手機怎麼多選文件夾 瀏覽:683
如何取消命令方塊指令 瀏覽:349
風翼app為什麼進不去了 瀏覽:778
im4java壓縮圖片 瀏覽:362
數據查詢網站源碼 瀏覽:150
伊克塞爾文檔怎麼進行加密 瀏覽:892
app轉賬是什麼 瀏覽:163