⑴ 分數四則混合運算規則是什麼
先乘除,後加減,先算括弧內面的,再算括弧外面的,和(整數 )演算法相同。
四則運算是指一級運算(加減)和二級運算(乘除)同時出現在一個式子中的運算。
四則指加法、減法、乘法、除法的計演算法則。
一道四則運算的算式並不需要一定有四種運算符號,一般指由兩個或兩個以上運算符號及括弧,把多數合並成一個數的運算。在混合運算中,先算括弧 ,括弧從小到大。然後從高級到低級。
分數乘法運演算法則
1、分數乘整數時,用分數的分子和整數相乘的積做分子,分母不變。能約分的要先約分。
2、分數乘分數時,用分子相乘的積做分子,分母相乘的積做分母,能約分的先約分。
3、分數乘小數時,可以把分數化為小數,也可以把小數化成分數,能約分的先約分。
分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。
⑵ 分數運算定律和簡便運算
分數加減法:分母不變,分子相加減。
分數乘法:分子×分子,分母×分母
⑶ 分數和分數相乘怎麼算
分數的分子與分子相乘,分母與分母相乘,能約分的要先約分。
分數表示一個數是另一個數的幾分之幾,或一個事件與所有事件的比例。把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫分數。分子在上,分母在下。
當分母為100的特殊情況時,可以寫成百分數的形式,如1% 。
歷史
最早的分數是整數倒數:代表二分之一的古代符號,三分之一,四分之一,等等。埃及人使用埃及分數c。 1000 bc。大約4000年前,埃及人用分數略有不同的方法分開。他們使用最小公倍數與單位分數。他們的方法給出了與現代方法相同的答案。埃及人對於Akhmim木片和二代數學紙莎草的問題也有不同的表示法。
希臘人使用單位分數和(後)持續分數。希臘哲學家畢達哥拉斯(c。530 bc)的追隨者發現,兩個平方根不能表示為整數的一部分。 (通常這可能是錯誤的歸因於Metapontum的Hippasus,據說他已被處決以揭示這一事實)。在印度的150名印度人中,耆那教數學家寫了「Sthananga Sutra」,其中包含數字理論,算術學操作和操作。
⑷ 分數的運演算法則
1、整數加、減計演算法則:
1)要把相同數位對齊,再把相同計數單位上的數相加或相減;
7+2=9
2)哪一位滿十就向前一位進。
9+6=15
2、小數加、減法的計演算法則:
1)計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),
5.2+4.7=9.9
2)再按照整數加、減法的法則進行計算,最後在得數里對齊橫線上的小數點點上小數點。
4.7+9.8=14.5
(得數的小數部分末尾有0,一般要把0去掉。)
3、分數加、減計演算法則:
1)分母相同時,只把分子相加、減,分母不變;
2)分母不相同時,要先通分成同分母分數再相加、減。
4、整數乘法法則:
1)從右起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對個因數的哪一位對齊;
2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)
5、小數乘法法則:
1)按整數乘法的法則算出積;
2)再看因數中一共有幾位小數,就從得數的右邊起數出幾位,點上小數點。
3)得數的小數部分末尾有0,一般要把0去掉。
6、分數乘法法則:把各個分數的分子乘起來作為分子,各個分數的分母相乘起來作為分母,(即乘上這個分數的倒數),然後再約分。
7、整數的除法法則
1)從被除數的商位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數;
2)除到被除數的哪一位,就在那一位上面寫上商;
3)每次除後餘下的數必須比除數小。
8、除數是整數的小數除法法則:
1)按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;
2)如果除到被除數的末尾仍有餘數,就在余數後面補零,再繼續除。
9、除數是小數的小數除法法則:
1)先看除數中有幾位小數,就把被除數的小數點向右移動幾位,數位不夠的用零補足;
2)然後按照除數是整數的小數除法來除
10、分數的除法法則:
1)用被除數的分子與除數的分母相乘作為分子;
2)用被除數的分母與除數的分子相乘作為分母。
數的范圍
⑸ 分數的運演算法則是什麼
分數乘整數,用分數的分子和整數相乘的積做分子,分母不變
分數乘分數,用分子相乘的積做分子,分母相乘的積做分母,能約分的要約分
分數除以一個數,等於乘這個數的倒數
⑹ 分數指數冪的運演算法則是什麼
指數加減底不變,同底數冪相乘除。
指數相乘底不變,冪的乘方要清楚。
積商乘方原指數,換底乘方再乘除。
非零數的零次冪,常值為 1不糊塗。
負整數的指數冪,指數轉正求倒數。
看到分數指數冪,想到底數必非負。
乘方指數是分子,根指數要當分母。
意義
把單位「1」平均分成幾份,表示這樣一份或幾份的數叫做分數。在分數里,表示把單位「1」平均分成多少份的叫做分母,表示有這樣多少份的叫做分子;其中的一份叫做分數單位。
要了解小數的意義,可從分數的意義著手,分數的意義可從分割及合成活動來解釋,當一個整體被等分後,在集聚其中一部分的量稱為「分量」,而「分數」就是用來表示或紀錄這個「分量」。
⑺ 分數四則運算是什麼
加法:分母相同:分子加分子,分母不變。
分母不同:先找出分母的最小公倍數,通分,然後再加。
減法:分母相同:同上。
分母不同:同上。
乘法:分子乘分子,分母乘分母。
除法:第一個分數除以第二個分數,等於第一個分數乘第二個分數的倒數,然後按照乘法的計算方法算就ok了。
首先,分數四則運算的順序要正確,如果一個算式里,都是同一級運算,那麼,就按照從左往右的順序,進行運算。如果既有加減,又有乘除,那麼,就要按照先算乘除後算加減的順序進行運算。最後,如果算式當中有小括弧,要先算括弧里,再算括弧外。
其次,在簡便運算當中,一定要合理地使用乘法的三個運演算法則:乘法交換律、乘法分配律、乘法結合律。這些運演算法則,都要能夠靈活運用,才能把分數四則運算正確地做出來。
⑻ 分數加減法法則
分數加減法法則
1、同分母分數相加,分母不變,即分數單位不變,分子相加,能約分的要約分。
2、異分母分數相加,先通分,即運用分數的基本性質將異分母分數轉化為同分母分數,改變其分數單位而大小不變,再按同分母分數相加去計算,最後能約分的要約分。
3、帶分數相加,把各個加數中的整數部分相加所得的和作為和的整數部分,再把各個加數中的分數部分相加所得的和作為和的分數部分,若得的分數部分為假分數,要化為整數或帶分數,並將其整數再加入整數部分。
或者把全部加數中的帶分數先化為假分數,再按分數加法的法則求和,然後將結果仍化為帶分數或整數。
4、每次加得的和,都要約分化成最簡分數;如果所得的和是假分數,要化成整數或帶分數。
5、同分母分數相減,分母不變,分子相減所得的差作為差的分子。
6、異分母分數相減,先通分,化為同分母的分數後,再按同分母的減法法則進行運算。
7、帶分數相減,先將各帶分數化為假分數,再通分化為同分母的分數,然後按同分母分數相減的法則進行運算,最後的差化為帶分數或整數。
8、差不是最簡分數時,要通過約分化為最簡分數。
⑼ 分數的加減乘除運演算法則是什麼
分數加、減計演算法則:
1、分母相同時,只把分子相加、減,分母不變;
2、分母不相同時,要先通分成同分母分數再相加、減。
分數乘法法則:
把各個分數的分子乘起來作為分子,各個分數的分母相乘起來作為分母,(即乘上這個分數的倒數),然後再約分。
分數的除法法則:
1、用被除數的分子與除數的分母相乘作為分子;
2、用被除數的分母與除數的分子相乘作為分母。
分數的意義
一個物體,一個圖形,一個計量單位,都可看作單位「1」。把單位「1」平均分成幾份,表示這樣一份或幾份的數叫做分數。
在分數里,表示把單位「1」平均分成多少份的叫做分母,表示有這樣多少份的叫做分子;其中的一份叫做分數單位。
百分數與分數的區別:
1、意義不同,百分數只表示兩個數的倍比關系,不能帶單位名稱;分數既可以表示具體的數,又可以表示兩個數的關系,表示具體數時可帶單位名稱。
2、百分數不可以約分,而分數一般通過約分化成最簡分數。
3、任何一個百分數都可以寫成分母是100的分數,而分母是100的分數並不都具有百分數的意義。
4、應用范圍的不同,百分數在生產和生活中,常用於調查、統計、分析和比較,而分數常常在計算、測量中得不到整數結果時使用。
⑽ 分數運算定律是什麼
加法:分母變成最小公倍數,分子相加,然後進行約分
減法:同加法,分母變成最小公倍數,分子相減
乘法:分子乘以分子,分母乘以分母,結果進行約分
除法:被除數乘以除數的倒數,然後進行乘法的運算