導航:首頁 > 源碼編譯 > 自適應均衡演算法lms

自適應均衡演算法lms

發布時間:2023-07-04 14:00:34

❶ LMS自適應演算法分析及在數字濾波器設計中的應用

自適應過程一般採用典型LMS自適應演算法,但當濾波器的輸入信號為有色隨機過程時,特別是當輸入信號為高度相關時,這種演算法收斂速度要下降許多,這主要是因為輸入信號的自相關矩陣特徵值的分散程度加劇將導致演算法收斂性能的惡化和穩態誤差的增大。此時若採用變換域演算法可以增加演算法收斂速度。變換域演算法的基本思想是:先對輸入信號進行一次正交變換以去除或衰減其相關性,然後將變換後的信號加到自適應濾波器以實現濾波處理,從而改善相關矩陣的條件數。因為離散傅立葉變換�DFT本身具有近似正交性,加之有FFT快速演算法,故頻域分塊LMS�FBLMS演算法被廣泛應用。

FBLMS演算法本質上是以頻域來實現時域分塊LMS演算法的,即將時域數據分組構成N個點的數據塊,且在每塊上濾波權系數保持不變。其原理框圖如圖2所示。FBLMS演算法在頻域內可以用數字信號處理中的重疊保留法來實現,其計算量比時域法大為減少,也可以用重疊相加法來計算,但這種演算法比重疊保留法需要較大的計算量。塊數據的任何重疊比例都是可行的,但以50%的重疊計算效率為最高。對FBLMS演算法和典型LMS演算法的運算量做了比較,並從理論上討論了兩個演算法中乘法部分的運算量。本文從實際工程出發,詳細分析了兩個演算法中乘法和加法的總運算量,其結果為:

復雜度之比=FBLMS實數乘加次數/LMS實數乘加次數=(25Nlog2N+2N-4)/[2N(2N-1)]�

採用ADSP的C語言來實現FBLMS演算法的程序如下:

for(i=0;i<=30;i++)

{for(j=0;j<=n-1;j++)

{in[j]=input[i×N+j;]

rfft(in,tin,nf,wfft,wst,n);

rfft(w,tw,wf,wfft,wst,n);

cvecvmlt(inf,wf,inw,n);

ifft(inw,t,O,wfft,wst,n);

for(j=0,j<=N-1;j++)

{y[i×N+j]=O[N+j].re;

e[i×N+j]=refere[i×N+j]-y[i×N+j];

temp[N+j]=e[i×N+j;}

rfft(temp,t,E,wfft,wst,n);

for(j=0;j<=n-1;j++)

{inf_conj[j]=conjf(inf[j]);}��

cvecvmlt(E,inf_conj,Ein,n);

ifft(Ein,t,Ein,wfft,wst,n);

for(j=0;j<=N-1;j++)

{OO[j]=Ein[j].re;

w[j]=w[j]+2*u*OO[j];}��

}

在EZ-KIT測試板中,筆者用匯編語言和C語言程序分別測試了典型LMS演算法的運行速度,並與FBLMS演算法的C語言運行速度進行了比較,表2所列是其比較結果,從表2可以看出濾波器階數為64時,即使是用C語言編寫的FBLMS演算法也比用匯編編寫的LMS演算法速度快20%以上,如果濾波器的階數更大,則速度會提高更多。

❷ 急求,matlab在自適應均衡中RLS和LMS演算法的程序

%lms演算法源程序

clear all
close all
%channel system order
sysorder = 5 ;
% Number of system points
N=2000;
inp = randn(N,1);
n = randn(N,1);
[b,a] = butter(2,0.25);
Gz = tf(b,a,-1);
%This function is submitted to make inverse Z-transform (Matlab central file exchange)
%The first sysorder weight value
%h=ldiv(b,a,sysorder)';
% if you use ldiv this will give h :filter weights to be
h= [0.0976;
0.2873;
0.3360;
0.2210;
0.0964;];
y = lsim(Gz,inp);
%add some noise
n = n * std(y)/(10*std(n));
d = y + n;
totallength=size(d,1);
%Take 60 points for training
N=60 ;
%begin of algorithm
w = zeros ( sysorder , 1 ) ;
for n = sysorder : N
u = inp(n:-1:n-sysorder+1) ;
y(n)= w' * u;
e(n) = d(n) - y(n) ;
% Start with big mu for speeding the convergence then slow down to reach the correct weights
if n < 20
mu=0.32;
else
mu=0.15;
end
w = w + mu * u * e(n) ;
end
%check of results
for n = N+1 : totallength
u = inp(n:-1:n-sysorder+1) ;
y(n) = w' * u ;
e(n) = d(n) - y(n) ;
end
hold on
plot(d)
plot(y,'r');
title('System output') ;
xlabel('Samples')
ylabel('True and estimated output')
figure
semilogy((abs(e))) ;
title('Error curve') ;
xlabel('Samples')
ylabel('Error value')
figure
plot(h, 'k+')
hold on
plot(w, 'r*')
legend('Actual weights','Estimated weights')
title('Comparison of the actual weights and the estimated weights') ;
axis([0 6 0.05 0.35])

% RLS 演算法
randn('seed', 0) ;
rand('seed', 0) ;

NoOfData = 8000 ; % Set no of data points used for training
Order = 32 ; % Set the adaptive filter order

Lambda = 0.98 ; % Set the forgetting factor
Delta = 0.001 ; % R initialized to Delta*I

x = randn(NoOfData, 1) ;% Input assumed to be white
h = rand(Order, 1) ; % System picked randomly
d = filter(h, 1, x) ; % Generate output (desired signal)

% Initialize RLS

P = Delta * eye ( Order, Order ) ;
w = zeros ( Order, 1 ) ;

% RLS Adaptation

for n = Order : NoOfData ;

u = x(n:-1:n-Order+1) ;
pi_ = u' * P ;
k = Lambda + pi_ * u ;
K = pi_'/k;
e(n) = d(n) - w' * u ;
w = w + K * e(n) ;
PPrime = K * pi_ ;
P = ( P - PPrime ) / Lambda ;
w_err(n) = norm(h - w) ;

end ;

% Plot results

figure ;
plot(20*log10(abs(e))) ;
title('Learning Curve') ;
xlabel('Iteration Number') ;
ylabel('Output Estimation Error in dB') ;

figure ;
semilogy(w_err) ;
title('Weight Estimation Error') ;
xlabel('Iteration Number') ;
ylabel('Weight Error in dB') ;

可以看得出來,收斂速度RLS更快,對程序可以看得出來運算量也是RLS更大。
可以參照我回答的解決一個RLS具體問題的例子。在網路裡面可以搜到。

❸ 什麼是LMS演算法

LMS演算法是指 Least mean square 演算法的意思。
全稱 Least mean square 演算法。是最小均方演算法中文。
感知器和自適應線性元件在歷史上幾乎是同時提出的,並且兩者在對權值的調整的演算法非常相似。它們都是基於糾錯學習規則的學習演算法。感知器演算法存在如下問題:不能推廣到一般的前向網路中;函數不是線性可分時,得不出任何結果。而由美國斯坦福大學的Widrow和Hopf在研究自適應理論時提出的LMS演算法,由於其容易實現而很快得到了廣泛應用,成為自適應濾波的標准演算法。

❹ 什麼是LMS自適應均衡器,怎麼用FPGA實現LMS自適應均衡器

自適應均衡屬於自適應信號處理的應用范疇,各種各樣的自適應均衡演算法如迫零(ZF)演算法、最小均方(LMS)演算法、遞歸最小二乘(RLS)演算法、變換域均衡算此答正法、Bussgang 演算法、高階森悔或循環統計量演算法、基於非線性濾波器或神經網路的均衡演算法等應運而生。均衡器通常工作在接收機的舉鋒基帶或中頻信號部分,基帶信號的復包絡含有信道帶寬信號的全部信息,所以,均衡器通常在基帶信號完成估計信道沖激響應和解調輸出信號中實現自適應演算法等

❺ 自適應演算法的簡介

自適應過程是一個不斷逼近目標的過程。它所遵循的途徑以數學模型表示,稱為自適應演算法。通常採用基於梯度的演算法,其中最小均方誤差演算法(即LMS演算法)尤為常用。自適應演算法可以用硬體(處理電路)或軟體(程序控制)兩種辦法實現。前者依據演算法的數學模型設計電路,後者則將演算法的數學模型編製成程序並用計算機實現。演算法有很多種,它的選擇很重要,它決定處理系統的性能質量和可行性。
自適應均衡器的原理就是按照某種准則和演算法對其系數進行調整最終使自適應均衡器的代價(目標)函數最小化,達到最佳均衡的目的。而各種調整系數的演算法就稱為自適應演算法,自適應演算法是根據某個最優准則來設計的。最常用的自適應演算法有迫零演算法,最陡下降演算法,LMS演算法,RLS演算法以及各種盲均衡演算法等。在理論上證明了對於任何統計特性的雜訊干擾,VLMS演算法優於LMS演算法。
自適應演算法所採用的最優准則有最小均方誤差(LMS)准則,最小二乘(LS)准則、最大信噪比准則和統計檢測准則等,其中最小均方誤差(LMS)准則和最小二乘(LS)准則是目前最為流行的自適應演算法准則。由此可見LMS演算法和RLS演算法由於採用的最優准則不同,因此這兩種演算法在性能,復雜度等方面均有許多差別。

❻ 什麼是LMS演算法,全稱是什麼

1959年,Widrow和Hof提出的最小均方(LMS )演算法對自適應技術的發展起了極
大的作用。由於LMS演算法簡單和易於實現,它至今仍被廣泛應用。對LMS演算法的性能
和改進演算法已經做了相當多的研究,並且至今仍是一個重要的研究課題。進一步的研究
工作涉及這種演算法在非平穩、相關輸入時的性能研究。當輸入相關矩陣的特徵值分散時,
LMS演算法的收斂性變差,研究的另一個方面在於如何解決步長大小與失調量之間的矛
盾。
全稱 Least mean square

❼ lms演算法是什麼

LMS(Least mean square)演算法,即最小均方誤差演算法。

lms演算法由美國斯坦福大學的B Widrow和M E Hoff於1960年在研究自適應理論時提出,由於其容易實現而很快得到了廣泛應用,成為自適應濾波的標准演算法。在濾波器優化設計中,採用某種最小代價函數或者某個性能指標來衡量濾波器的好壞,而最常用的指標就是均方誤差,也把這種衡量濾波器好壞的方法叫做均方誤差准則。

lms演算法的特點

根據小均方誤差准則以及均方誤差曲面,自然的我們會想到沿每一時刻均方誤差 的陡下降在權向量面上的投影方向更新,也就是通過目標函數的反梯度向量來反 復迭代更新。由於均方誤差性能曲面只有一個唯一的極小值,只要收斂步長選擇恰當, 不管初始權向量在哪,後都可以收斂到誤差曲面的小點,或者是在它的一個鄰域內。

閱讀全文

與自適應均衡演算法lms相關的資料

熱點內容
dvd光碟存儲漢子演算法 瀏覽:757
蘋果郵件無法連接伺服器地址 瀏覽:962
phpffmpeg轉碼 瀏覽:671
長沙好玩的解壓項目 瀏覽:144
專屬學情分析報告是什麼app 瀏覽:564
php工程部署 瀏覽:833
android全屏透明 瀏覽:737
阿里雲伺服器已開通怎麼辦 瀏覽:803
光遇為什麼登錄時伺服器已滿 瀏覽:302
PDF分析 瀏覽:484
h3c光纖全工半全工設置命令 瀏覽:143
公司法pdf下載 瀏覽:381
linuxmarkdown 瀏覽:350
華為手機怎麼多選文件夾 瀏覽:683
如何取消命令方塊指令 瀏覽:349
風翼app為什麼進不去了 瀏覽:778
im4java壓縮圖片 瀏覽:362
數據查詢網站源碼 瀏覽:150
伊克塞爾文檔怎麼進行加密 瀏覽:892
app轉賬是什麼 瀏覽:163