⑴ 模型與演算法之間是什麼關系
模型是一類問題的解題步驟,亦即一類問題的演算法。如果問題的演算法不具有一般性,就沒有必要為演算法建立模型,因為此時個體和整體的對立不明顯,模型的抽象性質也體現不出來。
數學模型還沒有一個統一的准確的定義,因為站在不同的角度可以有不同的定義。不過我們可以給出如下定義。"數學模型是關於部分現實世界和為一種特殊目的而作的一個抽象的、簡化的結構。"具體來說,數學模型就是為了某種目的,用字母、數字及其它數學符號建立起來的等式或不等式以及圖表、圖象、框圖等描述客觀事物的特徵及其內在聯系的數學結構表達式。
演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
⑵ 數學建模常用模型及演算法
四大模型:
1、優化模型 2、評價模型 3、預測模型 4、統計模型
對應常用算鏈禪法
線性規劃
線性回歸是利用數理統計中回歸分析,來確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法,在線性回歸分析中,只包括一個自變數和一個因變數,且二者的關系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。如果回歸分析中包括兩個或兩個以上的自變數,且因變數和自變數之間是線性關系,則稱搜罩為多元線性回歸分析。世喚鬧
⑶ 數學建模中的數學模型和演算法有什麼關系,怎樣理解它們之間的聯系和區別
模型是將實際問題轉換為數學問題,演算法是求解模型的方法。