❶ 演算法的概念
演算法(Algorithm)是解題的步驟,可以把演算法定義成解一確定類問題的任意一種特殊的方法。在計算機科學中,演算法要用計算機演算法語言描述,演算法代表用計算機解一類問題的精確、有效的方法。演算法+數據結構=程序,求解一個給定的可計算或可解的問題,不同的人可以編寫出不同的程序,來解決同一個問題,這里存在兩個問題:一是與計算方法密切相關的演算法問題;二是程序設計的技術問題。演算法和程序之間存在密切的關系。
演算法是一組有窮的規則,它們規定了解決某一特定類型問題的一系列運算,是對解題方案的准確與完整的描述。制定一個演算法,一般要經過設計、確認、分析、編碼、測試、調試、計時等階段。
對演算法的學習包括五個方面的內容:① 設計演算法。演算法設計工作是不可能完全自動化的,應學習了解已經被實踐證明是有用的一些基本的演算法設計方法,這些基本的設計方法不僅適用於計算機科學,而且適用於電氣工程、運籌學等領域;② 表示演算法。描述演算法的方法有多種形式,例如自然語言和演算法語言,各自有適用的環境和特點;③確認演算法。演算法確認的目的是使人們確信這一演算法能夠正確無誤地工作,即該演算法具有可計算性。正確的演算法用計算機演算法語言描述,構成計算機程序,計算機程序在計算機上運行,得到演算法運算的結果;④ 分析演算法。演算法分析是對一個演算法需要多少計算時間和存儲空間作定量的分析。分析演算法可以預測這一演算法適合在什麼樣的環境中有效地運行,對解決同一問題的不同演算法的有效性作出比較;⑤ 驗證演算法。用計算機語言描述的演算法是否可計算、有效合理,須對程序進行測試,測試程序的工作由調試和作時空分布圖組成。
❷ 演算法的性質有哪些
演算法的一般性質包括:
(1) 通用性 對於那些符合輸入類型的任意輸入數據,都能根據演算法進行問題求解,包保證計算結構的正確性。
(2) 有效性 組成演算法的每一條指令都必須是能夠被人或機器確切執行的。
(3) 確定性 演算法每執行一步之後,對於它的下一步,應該有明確的指示。即,保證每一步之後都有關於下一步動作的指令,不能缺乏下一步指令或僅僅含有模糊不清的指令。
(4) 有窮性 演算法的執行必須在有限步內結束。
❸ 演算法的性質是什麼常見的數據結構的類型是什麼
演算法的特點:
1、輸入:一個演算法必須有零個或以上輸入量。
2、輸出:一個演算法應有一個或以上輸出量,輸出量是演算法計算的結果。
3、明確性:演算法的描述必須無歧義,以保證演算法的實際執行結果是精確地符合要求或期望,通常要求實際運行結果是確定的。
4、有限性:依據圖靈的定義,一個演算法是能夠被任何圖靈完備系統模擬的一串運算,而圖靈機只有有限個狀態、有限個輸入符號和有限個轉移函數(指令)。而一些定義更規定演算法必須在有限個步驟內完成任務。
5、有效性:又稱可行性。能夠實現,演算法中描述的操作都是可以通過已經實現的基本運算執行有限次來實現。
常用的數據結構有4種:
1.集合。2.線性結構。3.樹形結構。4.圖狀結構;
❹ 路由演算法的類型有
靜態路由演算法
1.Dijkstra演算法(最短路徑演算法)
Dijkstra(迪傑斯特拉)演算法是典型的單源最短路徑演算法,用於計算一個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。Dijkstra演算法是很有代表性的最短路徑演算法,在很多專業課程中都作為基本內容有詳細的介紹,如數據結構,圖論,運籌學等等。Dijkstra一般的表述通常有兩種方式,一種用永久和臨時標號方式,一種是用OPEN,CLOSE表的方式,這里均採用永久和臨時標號的方式。注意該演算法要求圖中不存在負權迴路。
Dijkstra演算法執行步驟如下:
步驟一:路由器建立一張網路圖,並且確定源節點和目的節點,在這個例子里我們設為V1和V2。然後路由器建立一個矩陣,稱為「鄰接矩陣」。在這個矩陣中,各矩陣元素表示權值。例如,[i,j]是節點Vi與Vj之間的鏈路權值。如果節點Vi與Vj之間沒有鏈路直接相連,它們的權值設為「無窮大」。
步驟二:路由器為網路中的每一個節點建立一組狀態記錄。此記錄包括三個欄位:
前序欄位———表示當前節點之前的節點。
長度欄位———表示從源節點到當前節點的權值之和。
標號欄位———表示節點的狀態。每個節點都處於一個狀態模式:「永久」或「暫時」。
步驟三:路由器初始化(所有節點的)狀態記錄集參數,將它們的長度設為「無窮大」,標號設為「暫時」。
步驟四:路由器設置一個T節點。例如,如果設V1是源T節點,路由器將V1的標號更改為「永久」。當一個標號更改為「永久」後,它將不再改變。一個T節點僅僅是一個代理而已。
步驟五:路由器更新與源T節點直接相連的所有暫時性節點的狀態記錄集。
步驟六:路由器在所有的暫時性節點中選擇距離V1的權值最低的節點。這個節點將是新的T節點。
步驟七:如果這個節點不是V2(目的節點),路由器則返回到步驟5。
步驟八:如果節點是V2,路由器則向前回溯,將它的前序節點從狀態記錄集中提取出來,如此循環,直到提取到V1為止。這個節點列表便是從V1到V2的最佳路由。
2.擴散法
事先不需要任何網路信息;路由器把收到的每一個分組,向除了該分組到來的線路外的所有輸出線路發送。將來會有多個分組的副本到達目的地端,最先到達的,可能是走了「最優」的路徑常見的擴散法是選擇性擴散演算法。
3.LS演算法
採用LS演算法時,每個路由器必須遵循以下步驟:
步驟一:確認在物理上與之相連的路由器並獲得它們的IP地址。當一個路由器開始工作後,它首先向整個網路發送一個「HELLO」分組數據包。每個接收到數據包的路由器都將返回一條消息,其中包含它自身的IP地址。
步驟二:測量相鄰路由器的延時(或者其他重要的網路參數,比如平均流量)。為做到這一點,路由器向整個網路發送響應分組數據包。每個接收到數據包的路由器返回一個應答分組數據包。將路程往返時間除以2,路由器便可以計算出延時。(路程往返時間是網路當前延遲的量度,通過一個分組數據包從遠程主機返回的時間來測量。)該時間包括了傳輸和處理兩部分的時間——也就是將分組數據包發送到目的地的時間以及接收方處理分組數據包和應答的時間。
步驟三:向網路中的其他路由器廣播自己的信息,同時也接收其他路由器的信息。
在這一步中,所有的路由器共享它們的知識並且將自身的信息廣播給其他每一個路由器。這樣,每一個路由器都能夠知道網路的結構以及狀態。
步驟四:使用一個合適的演算法,確定網路中兩個節點之間的最佳路由。
❺ 演算法有哪些形式
自然語言,偽代碼,程序框圖,程序語言
❻ 常見演算法有哪些
模擬
擬陣
暴力
貪心
二分法
整體二
三分法
一般動規與遞推
斯坦納樹
動態樹分治
2-SAT
並查集
差分約束
最短路
最小割
費用流
最大流
有上下界網路流
虛樹
矩陣樹定理
最小生成樹
點分治
樹鏈剖分
prufer編碼
哈夫曼樹
拉格朗日乘數法
BSGS
博弈論
矩陣乘法
高斯消元
容斥原理
抽屜原理
模線性方程組
莫比烏斯反演
快速傅里葉變換
擴展歐幾里得演算法(
裴蜀定理
dfs序
深度搜索
迭代深搜
廣度搜索
雙向廣搜
啟發式搜索
dancing link
迴文自動機
KMP
字典樹
後綴數組
AC自動機
後綴自動機
manacher
凸包
掃描線
三角剖分
旋轉卡殼
半平面交
cdq分治
莫隊演算法
爬山演算法
分數規劃
模擬退火
朱劉演算法
隨機增量法
倍增演算法
❼ 常見的分類演算法有哪些
決策樹 貝葉斯 人工神經網路 k-近鄰 支持向量機 基於關聯規則的分類 集成學習
❽ 演算法有哪些分類
演算法分類編輯演算法可大致分為:
基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法,厄米變形模型,隨機森林演算法。
❾ 什麼是演算法演算法的概念演算法的特點都有哪些
1、演算法概念:
在數學上,現代意義上的「演算法」通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內完成.
2. 演算法的特點:
(1)有限性:一個演算法的步驟序列是有限的,必須在有限操作之後停止,不能是無限的.
(2)確定性:演算法中的每一步應該是確定的並且能有效地執行且得到確定的結果,而不應當是模稜兩可.
(3)順序性與正確性:演算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的後繼步驟,前一步是後一步的前提,只有執行完前一步才能進行下一步,並且每一步都准確無誤,才能完成問題.
(4)不唯一性:求解某一個問題的解法不一定是唯一的,對於一個問題可以有不同的演算法.
(5)普遍性:很多具體的問題,都可以設計合理的演算法去解決,如心算、計算器計算都要經過有限、事先設計好的步驟加以解決.