導航:首頁 > 源碼編譯 > 數學建模演算法與應用電子版

數學建模演算法與應用電子版

發布時間:2023-07-12 05:28:33

1. 【數學建模演算法】(16)排隊論:常用的幾種概率分布及產生

區間 內的 均勻分布 記做 。服從 分布的隨機變數又稱為隨機數,它是產生其他隨機變數的基礎。如若 為 分布,則 服從 。

以 為期望, 為方差的 正態分布 記做 。正態分布的應用十分廣泛。正態分布還可以作為二項分布一定條件下的近似。

指數分布 是單參數 的非對稱分布,記做 ,概率密度函數為:

數學期望為 ,方差為 。指數分布是唯一具有無記憶性的連續型隨機變數,既有 ,在排隊論,可靠性分析中有廣泛應用。

Gamma分布是雙參數 的非對稱分布,記做 ,期望是 。 時退化為指數分布。 個相互獨立,同分布(參數 )的指數分布之和是Gamma分布 。Gamma分布可用於服務時間,零件壽命等。
Gamma分布又稱為埃爾朗分布。

Weibull分布是雙參數 的非對稱分布,記做 。 時退化為指數分布。作為設備,零件的壽命分布在可靠性分析中有非常廣泛的應用。

Beta分布是區間 內的雙參數,非均勻分布,記做 。

伯努利分布是 處取值的概率分別是 和 的兩點分布,記做 。用於基本的離散模型。

泊松分布與指數分布有密切的關系。當顧客平均到達率為常數 的到達間隔服從指數分布時,單位時間內到達的顧客數 服從泊松分布,即單位時間內到達 位顧客的概率為:

記做 。泊松分布在排隊服務,產品檢驗,生物與醫學統計,天文,物理等領域都有廣泛應用。

在獨立進行的每次試驗中,某事件發生的概率為 ,則 次實驗中該事件發生的次數 服從二項分布,即發生 次的概率為:

記做 。二項分布是 個獨立的伯努利分布之和。它在產品檢驗,保險,生物和醫學統計等領域有著廣泛的應用。
當 很大時, 近似於正態分布 ;當 很大, 很小,且 約為常數 時, 近似於

2. 求分享下司守奎老師的數學建模演算法與應用這本書的電子版,多謝多謝

pdf" wealth="0" />

3. Python數據分析在數學建模中的應用匯總(持續更新中!)

1、Numpy常用方法使用大全(超詳細)

1、Series和DataFrame簡單入門
2、Pandas操作CSV文件的讀寫
3、Pandas處理DataFrame,Series進行作圖

1、Matplotlib繪圖之屬性設置
2、Matplotlib繪制誤差條形圖、餅圖、等高線圖、3D柱形圖

1、層次分析法(AHP)——算數平均值法、幾何平均值法、特徵值法(Python實現,超詳細注釋)
2、Python實現TOPSIS分析法(優劣解距離法)
3、Python實現線性插值和三次樣條插值
4、Python實現線性函數的擬合演算法
5、Python實現統計描述以及計算皮爾遜相關系數
6、Python實現迪傑斯特拉演算法和貝爾曼福特演算法求解最短路徑

4. 求助,關於司守奎的數學建模演算法與程序

本書是是國防工業出版社出版的《數學建模演算法與應用(第2班)》的配套書籍。本書給出了《數學建模演算法與應用(第2版)》中全部習題的解答及程序設計,另外針對選修課的教學內容,又給出一些補充習題及解答。

本書的程序來自於教學實踐,有許多經驗心得體現在編程的技巧中。這些技巧不僅實用,也很有特色。書中提供了全部習題的程序,可以將這些程序直接作為工具箱來使用

5. 數學建模演算法總結

無總結反省則無進步

寫這篇文章,一是為了總結之前為了准備美賽而學的演算法,而是將演算法羅列並有幾句話解釋方便以後自己需要時來查找。

數學建模問題總共分為四類:

1. 分類問題 2. 優化問題 3. 評價問題 4. 預測問題

我所寫的都是基於數學建模演算法與應用這本書

一 優化問題

線性規劃與非線性規劃方法是最基本經典的:目標函數與約束函數的思想

現代優化演算法:禁忌搜索;模擬退火;遺傳演算法;人工神經網路

模擬退火演算法:

簡介:材料統計力學的研究成果。統計力學表明材料中不同結構對應於粒子的不同能量水平。在高溫條件下,粒子的能量較高,可以自由運動和重新排列。在低溫條件下,粒子能量較低。如果從高溫開始,非常緩慢地降溫(此過程稱為退火),粒子就可以在每個溫度下達到熱平衡。當系統完全被冷卻時,最終形成處於低能狀態的晶體。

思想可用於數學問題的解決 在尋找解的過程中,每一次以一種方法變換新解,再用退火過程的思想,以概率接受該狀態(新解) 退火過程:概率轉化,概率為自然底數的能量/KT次方

遺傳演算法: 遺傳演算法是一種基於自然選擇原理和自然遺傳機制的搜索演算法。模擬自然界中的生命進化機制,在人工系統中實現特定目標的優化。

遺傳演算法的實質是通過群體搜索技術(?),根據適者生存的原則逐代進化,最終得到最優解或准最優解。

具體實現過程(P329~331)

* 編碼

* 確定適應度函數(即目標函數)

* 確定進化參數:群體規模M,交叉概率Pc,變異概率Pm,進化終止條件

* 編碼

* 確定初始種群,使用經典的改良圈演算法

* 目標函數

* 交叉操作

* 變異操作

* 選擇

改良的遺傳演算法

兩點改進 :交叉操作變為了以「門當戶對」原則配對,以混亂序列確定較差點位置 變異操作從交叉操作中分離出來

二 分類問題(以及一些多元分析方法)

* 支持向量機SVM

* 聚類分析

* 主成分分析

* 判別分析

* 典型相關分析

支持向量機SVM: 主要思想:找到一個超平面,使得它能夠盡可能多地將兩類數據點正確分開,同時使分開的兩類數據點距離分類面最遠

聚類分析(極其經典的一種演算法): 對樣本進行分類稱為Q型聚類分析 對指標進行分類稱為R型聚類分析

基礎:樣品相似度的度量——數量化,距離——如閔氏距離

主成分分析法: 其主要目的是希望用較少的變數去解釋原來資料中的大部分變異,將掌握的許多相關性很高的變數轉化成彼此相互獨立或不相關的變數。通常是選出比原始變數個數少,能解釋大部分資料中的變異的幾個新變數,及主成分。實質是一種降維方法

判別分析: 是根據所研究的個體的觀測指標來推斷個體所屬類型的一種統計方法。判別准則在某種意義下是最優的,如錯判概率最小或錯判損失最小。這一方法像是分類方法統稱。 如距離判別,貝葉斯判別和FISHER判別

典型相關分析: 研究兩組變數的相關關系 相對於計算全部相關系數,採用類似主成分的思想,分別找出兩組變數的各自的某個線性組合,討論線性組合之間的相關關系

三 評價與決策問題

評價方法分為兩大類,區別在於確定權重上:一類是主觀賦權:綜合資訊評價定權;另一類為客觀賦權:根據各指標相關關系或各指標值變異程度來確定權數

* 理想解法

* 模糊綜合評判法

* 數據包絡分析法

* 灰色關聯分析法

* 主成分分析法(略)

* 秩和比綜合評價法 理想解法

思想:與最優解(理想解)的距離作為評價樣本的標准

模糊綜合評判法 用於人事考核這類模糊性問題上。有多層次模糊綜合評判法。

數據包絡分析法 是評價具有多指標輸入和多指標輸出系統的較為有效的方法。是以相對效率為概念基礎的。

灰色關聯分析法 思想:計算所有待評價對象與理想對象的灰色加權關聯度,與TOPSIS方法類似

主成分分析法(略)

秩和比綜合評價法 樣本秩的概念: 效益型指標從小到大排序的排名 成本型指標從大到小排序的排名 再計算秩和比,最後統計回歸

四 預測問題

* 微分方程模型

* 灰色預測模型

* 馬爾科夫預測

* 時間序列(略)

* 插值與擬合(略)

* 神經網路

微分方程模型 Lanchester戰爭預測模型。。

灰色預測模型 主要特點:使用的不是原始數據序列,而是生成的數據序列 優點:不需要很多數據·,能利用微分方程來充分挖掘系統的本質,精度高。能將無規律的原始數據進行生成得到規律性較強的生成序列。 缺點:只適用於中短期預測,只適合指數增長的預測

馬爾科夫預測 某一系統未來時刻情況只與現在狀態有關,與過去無關。

馬爾科夫鏈

時齊性的馬爾科夫鏈

時間序列(略)

插值與擬合(略)

神經網路(略)

6. 數學建模的建模資料

《建模協會為鐵大學子准備的備戰建模資料0401-0502》網路網盤免費資源下載

鏈接: https://pan..com/s/1y9fB2G-J_gW98MH9K26XOA

?pwd=bnhp 提取碼: bnhp

建模協會為鐵大學子准備的備戰建模資料0401-0501|用前必讀:數學建模協會承辦競賽參賽報名通知渠道.docx|建模協會為鐵大學子准備的備戰建模資料.rar

7. 數學建模演算法與應用的內容簡介

《數學建模演算法與應用》主要內容簡介:作者司守奎、孫璽菁根據多年數學建模競賽輔導工作的經驗編寫《數學建模演算法與應用》系統全面,各章節相對獨立。《數學建模演算法與應用》所選案例具有代表性,注重從不同側面反映數學思想在實際問題中的靈活應用,既注重演算法原理的通俗性,也注重演算法應用的實現性,克服了很多讀者看懂演算法卻解決不了實際問題的困難。《數學建模演算法與應用》所有例題均配有madab或lingo源程序,程序設計簡單精煉,思路清晰,注釋詳盡,靈活應用Matlab工具箱,有利於沒有編程基礎的讀者快速入門。同時很多程序隱含了作者多年的編程經驗和技巧,為有一定編程基礎的讀者深入學習Matlab、Lingo等編程軟體提供了便捷之路。《數學建模演算法與應用》既可以作為數學建模課程教材和輔導書,也可以作為相關科技工作者參考用書。

8. 【數學建模演算法】(29)數據的統計描述和分析(上)

數理統計 研究的對象是受隨機因素影響的數據,以下數理統計就簡稱統計,統計是以概率論為基礎的一門應用學科。
數據樣本少則幾個,多則成千上萬,人們希望能用少數幾個包含其最多相關信息的數值來體現數據樣本總體的規律。描述性統計就是搜集、整理、加工和分析統計數據,使之系統化、條理化,以顯示出數據資料的趨勢、特徵和數量關系。它是統計推斷的基礎,實用性較強,在統計工作中經常使用。
面對一批數據如何進行描述與分析,需要掌握 參數估計 假設檢驗 這兩個數理統計的最基本方法。
我們將用 Matlab 的統計工具箱(Statistics Toolbox)來實現數據的統計描述和分析。

一組數據(樣本)往往是雜亂無章的,做出它的頻數表和直方圖,可以看作是對這組數據的一個初步整理和直觀描述。
將數據的取值范圍劃分為若干個區間,然後統計這組數據在每個區間中出現的次數,稱為 頻數 ,由此得到一個頻數表。以數據的取值為橫坐標,頻數為縱坐標,畫出一個階梯形的圖,稱為 直方圖 ,或 頻數分布圖
若樣本容量不大,能夠手工做出頻數表和直方圖,當樣本容量較大時則可以藉助Matlab這樣的軟體了。讓我們以下面的例子為例,介紹頻數表和直方圖的作法。

(1)數據輸入
數據輸入通常有兩種方法,一種是在交互環境中直接輸入,如果在統計中數據量比較大,這樣作不太方便;另一種辦法是先把數據寫入一個純文本數據文件data.txt中,數據列之間用空格和Tab鍵分割,之後以data.txt為文件名存放在某個子目錄下,用Matlab中的load命令讀入數據,具體做法是:
先把txt文件移入Matlab的工作文件夾中,之後在Matlab命令行或腳本中輸入:

這樣就在內存中建立了一個變數data它是一個包含有 個數據的矩陣。
為了得到我們需要的100個身高和體重均為一列的數據,我們對矩陣做如下處理:

(2)作頻數表及其直方圖
求頻數用hist函數實現,其用法是:

得到數組(行列均可) 的頻數表。它將區間 等分為 份(預設時 為10), 返回 個小區間的頻數, 返回 個小區間的中點。

同樣的一個函數名hist還可以用來畫出直方圖。
對於本例的數據,可以編寫如下程序畫出數據的直方圖。

得直方圖如下:

下面我們介紹幾種常用的統計量。

算術平均值 (簡稱均值)描述數據取值的平均位置,記作 ,

中位數 是將數據由小到大排序後位於中間位置的那個數值。
Matlab 中 mean(x)返回 x 的均值,median(x)返回中位數。

標准差 定義為:

它是各個數據與均值偏離程度的度量,這種偏離不妨稱為 變異

方差 是標准差的平方 。

極差 是 的最大值與最小值之差。

Matlab 中 std(x)返回 x 的標准差,var(x)返回方差,range(x)返回極差。

你可能注意到標准差 s 的定義(2)中,對 的平方求和卻被 除,這是出於無偏估計的要求。若需要改為被 除,Matlab 可用 std(x,1)和 var(x,1)來實現。

隨機變數 的 階 中心距 為 。

隨機變數 的 偏度 峰度 指的是 的標准化變數 的三階中心矩和四階中心矩:

偏度反映分布的對稱性, 稱為右偏態,此時數據位於均值右邊的比位於左邊的多; 稱為左偏態,情況相反;而 接近 0 則可認為分布是對稱的。

峰度是分布形狀的另一種度量,正態分布的峰度為 3,若 比 3 大得多,表示分布有沉重的尾巴,說明樣本中含有較多遠離均值的數據,因而峰度可以用作衡量偏離正態分布的尺度之一。

Matlab 中 moment(x,order)返回 x 的 order 階中心矩,order 為中心矩的階數。skewness(x)返回 x 的 偏度 ,kurtosis(x)返回 峰度

在以上用 Matlab 計算各個統計量的命令中,若 x 為矩陣,則作用於 x 的列,返回一個行向量。

對例1給出的學生身高和體重,用Matlab 計算這些統計量,程序如下:

統計量中最重要、最常用的是均值和標准差,由於樣本是隨機變數,它們作為樣本的函數自然也是隨機變數,當用它們去推斷總體時,有多大的可靠性就與統計量的概率分布有關,因此我們需要知道幾個重要分布的簡單性質。

隨機變數的特性完全由它的(概率)分布函數或(概率)密度函數來描述。設有隨機變數 ,其分布函數定義為 的概率,即 。若 是連續型隨機變數,則其密度函數 與 的關系為:

上 分位數是下面常用的一個概念,其定義為:對於 ,使某分布函數 的 ,稱為這個分布的上 分位數,記作 。
我們前面畫過的直方圖是頻數分布圖,頻數除以樣本容量 ,稱為頻率, 充分大時頻率是概率的近似,因此直方圖可以看作密度函數圖形的(離散化)近似。

正態分布可以說是最常見的(連續型)概率分布,成批生產時零件的尺寸,射擊中彈著點的位置,儀器反復量測的結果,自然界中一種生物的數量特徵等,多數情況下都服從正態分布,這不僅是觀察和經驗的總結,而且有著深刻的理論依據, 即在大量相互獨立的、作用差不多大的隨機因素影響下形成的隨機變數,其極限分布為正態分布

鑒於正態分布的隨機變數在實際生活中如此地常見,記住下面 3 個數字是有用的:

若 為相互獨立的、服從標准正態分布 的隨機變數,則它們的平方和 服從 分布,記作 , 稱為自由度,它的期望 ,方差 。

若 ,且相互獨立,則 服從 分布,記作 稱自由度。
分布的密度函數曲線和 曲線形狀相似。理論上 時, ,實際上當 時它與 就相差無幾了。

若 ,且相互獨立,則 服從 分布,記作 稱自由度。

Matlab統計工具箱中有27種概率分布,這里只對上面所述4中分布列出命令的字元:

工具箱對每一種分布都提供五類函數,其命令的字元是:

當需要一種分布的某一種函數時,將以上所列的分布命令字元與函數命令字元接起來,並輸入自變數(可以是標量、數組或矩陣)和參數就行了,如:

設總體 , 為一容量 的樣本,其均值 和標准差 由式(1),(2)確定,則用 和 構造的下面兩個分布在統計中是非常有用的。



設有兩個總體 和 ,及由容量分別為 的兩個樣本確定的均值 和標准差 ,則:


其中:
且要求

9. 數學建模建模分為幾種類型,分別用什麼法求解

數學建模應當掌握的十類演算法
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的算
法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要
處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具)
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題
屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、
Lingo軟體實現)
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉
及到圖論的問題可以用這些方法解決,需要認真准備)
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計
中比較常用的方法,很多場合可以用到競賽中)
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是
用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實
現比較困難,需慎重使用)
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽
題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好
使用一些高級語言作為編程工具)
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只
認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非
常重要的)
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常
用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調
用)
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該
要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab
進行處理)

閱讀全文

與數學建模演算法與應用電子版相關的資料

熱點內容
dvd光碟存儲漢子演算法 瀏覽:757
蘋果郵件無法連接伺服器地址 瀏覽:962
phpffmpeg轉碼 瀏覽:671
長沙好玩的解壓項目 瀏覽:144
專屬學情分析報告是什麼app 瀏覽:564
php工程部署 瀏覽:833
android全屏透明 瀏覽:736
阿里雲伺服器已開通怎麼辦 瀏覽:803
光遇為什麼登錄時伺服器已滿 瀏覽:302
PDF分析 瀏覽:484
h3c光纖全工半全工設置命令 瀏覽:143
公司法pdf下載 瀏覽:381
linuxmarkdown 瀏覽:350
華為手機怎麼多選文件夾 瀏覽:683
如何取消命令方塊指令 瀏覽:349
風翼app為什麼進不去了 瀏覽:778
im4java壓縮圖片 瀏覽:362
數據查詢網站源碼 瀏覽:150
伊克塞爾文檔怎麼進行加密 瀏覽:892
app轉賬是什麼 瀏覽:163