『壹』 演演算法是什麼主要的數學意義是什麼
東風數學主要特徵:1具有實用性,有較強的社會性;2演算法程序化模型化;3寓理與算並且是開放的歸納系統
西方數學主要特徵:1封閉的邏輯演繹體系季節化的演算法;2古希臘的數字與神秘性結合;3將數學抽象化;4希臘數學重視數學在美學上的意義
希臘人在數學上的貢獻主要是創立了平面幾何,立體幾何,平面與球面三角,數論。推廣了算數與代數。
東方數學注重實用性社會性,使數學與我們的生活密切聯系,二者都推動了現代數學的發展,都開創了數學的先河。
『貳』 台灣的大學課程演演算法相當於大陸的哪門課
就是大陸學校里的演算法設計與分析
『叄』 離散數學 等值演演算法
設p:派趙出國,q:派錢出國,r:派孫出國,s:派李出國,t:派周出國。則各條件分別符號化為:
(1)p→q,(2)(sVt),(3)(qA7r)V(-q^r),(4)(rAs)V(→rA-s),(5)1-+(p^q) 要求滿足各條件,
因而要求(1)~(5)的合取式為真.設:A≈(p→q)A(sV1)八((q八→r)V(→qλr))A((rAs)V(r八-s))∩(t→(p^q))
為了求出各派遣方案,應求出A的析取範式,最好是主析取範式,主析取範式中含的極小項個數為派遣方案數,由各極小項的成真賦值給出如何派法.所以要求出A的主析取範式。
下面給出求A的主析取範式的主要步驟:
易知,成真賦值為00110與11001。
方案1:孫、李出國,而趙.錢、周不去。
方案2:趙、錢、周出國,而孫、李不去。
隨著信息時代的到來,工業革命時代以微積分為代表的連續數學佔主流的地位已經發生了變化,離散數學的重要性逐漸被人們認識。離散數學課程所傳授的思想和方法,廣泛地體現在計算機科學技術及相關專業的諸領域,從科學計算到信息處理,從理論計算機科學到計算機應用技術,從計算機軟體到計算機硬體,從人工智慧到認知系統,無不與離散數學密切相關。
由於數字電子計算機是一個離散結構,它只能處理離散的或離散化了的數量關系, 因此,無論計算機科學本身,還是與計算機科學及其應用密切相關的現代科學研究領域,都面臨著如何對離散結構建立相應的數學模型;又如何將已用連續數量關系建立起來的數學模型離散化,從而可由計算機加以處理。
離散數學是傳統的邏輯學,集合論(包括函數),數論基礎,演算法設計,組合分析,離散概率,關系理論,圖論與樹,抽象代數(包括代數系統,群、環、域等),布爾代數,計算模型(語言與自動機)等匯集起來的一門綜合學科。離散數學的應用遍及現代科學技術的諸多領域。
離散數學也可以說是計算機科學的基礎核心學科,在離散數學中的有一個著名的典型例子-四色定理又稱四色猜想,這是世界近代三大數學難題之一,它是在1852年,由英國的一名繪圖員弗南西斯·格思里提出的,他在進行地圖著色時,發現了一個現象,「每幅地圖都可以僅用四種顏色著色,並且共同邊界的國家都可以被著上不同的顏色」。
那麼這能否從數學上進行證明呢?100多年後的1976年,肯尼斯·阿佩爾(Kenneth Appel)和沃爾夫岡·哈肯(Wolfgang Haken)使用計算機輔助計算,用了1200個小時和100億次的判斷,終於證明了四色定理,轟動世界,這就是離散數學與計算機科學相互協作的結果。