導航:首頁 > 源碼編譯 > c語言小根堆演算法實現

c語言小根堆演算法實現

發布時間:2023-07-13 14:35:33

❶ 常用數據結構有哪些

數據結構分為8類有:數組、棧、隊列、鏈表、樹、散列表、堆、圖。數據結構是指相互之間存在著一種或多種關系的數據元素的集合和該集合中數據元素之間的關系組成 。

1、數組

數組是可以再內存中連續存儲多個元素的結構,在內存中的分配也是連續的,數組中的元素通過數組下標進行訪問,數組下標從0開始。例如下面這段代碼就是將數組的第一個元素賦值為 1。

2、棧

棧是一種特殊的線性表,僅能在線性表的一端操作,棧頂允許操作,棧底不允許操作。 棧的特點是:先進後出,或者說是後進先出,從棧頂放入元素的操作叫入棧,取出元素叫出棧。

3、隊列

隊列與棧一樣,也是一種線性表,不同的是,隊列可以在一端添加元素,在另一端取出元素,也就是:先進先出。從一端放入元素的操作稱為入隊,取出元素為出隊。

4、鏈表

鏈表是物理存儲單元上非連續的、非順序的存儲結構,數據元素的邏輯順序是通過鏈表的指針地址實現,每個元素包含兩個結點,一個是存儲元素的數據域 (內存空間),另一個是指向下一個結點地址的指針域。根據指針的指向,鏈表能形成不同的結構,例如單鏈表,雙向鏈表,循環鏈表等。

5、樹

樹是一種數據結構,它是由n(n>=1)個有限節點組成一個具有層次關系的集合。把它叫做 「樹」 是因為它看起來像一棵倒掛的樹,也就是說它是根朝上,而葉朝下的。

6、散列表

散列表,也叫哈希表,是根據關鍵碼和值 (key和value) 直接進行訪問的數據結構,通過key和value來映射到集合中的一個位置,這樣就可以很快找到集合中的對應元素。

7、堆

堆是一種比較特殊的數據結構,可以被看做一棵樹的數組對象,具有以下的性質:堆中某個節點的值總是不大於或不小於其父節點的值;堆總是一棵完全二叉樹。將根節點最大的堆叫做最大堆或大根堆,根節點最小的堆叫做最小堆或小根堆。常見的堆有二叉堆、斐波那契堆等。

8、圖

圖是由結點的有窮集合V和邊的集合E組成。其中,為了與樹形結構加以區別,在圖結構中常常將結點稱為頂點,邊是頂點的有序偶對,若兩個頂點之間存在一條邊,就表示這兩個頂點具有相鄰關系。

❷ 有關匹配和排序的演算法,高手幫幫忙哈

一、插入排序(Insertion Sort)
1. 基本思想:
每次將一個待排序的數據元素,插入到前面已經排好序的數列中的適當位置,使數列依然有序;直到待排序數據元素全部插入完為止。
2. 排序過程:
【示例】:
[初始關鍵字] [49] 38 65 97 76 13 27 49
J=2(38) [38 49] 65 97 76 13 27 49
J=3(65) [38 49 65] 97 76 13 27 49
J=4(97) [38 49 65 97] 76 13 27 49
J=5(76) [38 49 65 76 97] 13 27 49
J=6(13) [13 38 49 65 76 97] 27 49
J=7(27) [13 27 38 49 65 76 97] 49
J=8(49) [13 27 38 49 49 65 76 97]

Procere InsertSort(Var R : FileType);
//對R[1..N]按遞增序進行插入排序, R[0]是監視哨//
Begin
for I := 2 To N Do //依次插入R[2],...,R[n]//
begin
R[0] := R[I]; J := I - 1;
While R[0] < R[J] Do //查找R[I]的插入位置//
begin
R[J+1] := R[J]; //將大於R[I]的元素後移//
J := J - 1
end
R[J + 1] := R[0] ; //插入R[I] //
end
End; //InsertSort //

二、選擇排序
1. 基本思想:
每一趟從待排序的數據元素中選出最小(或最大)的一個元素,順序放在已排好序的數列的最後,直到全部待排序的數據元素排完。
2. 排序過程:
【示例】:
初始關鍵字 [49 38 65 97 76 13 27 49]
第一趟排序後 13 〔38 65 97 76 49 27 49]
第二趟排序後 13 27 〔65 97 76 49 38 49]
第三趟排序後 13 27 38 [97 76 49 65 49]
第四趟排序後 13 27 38 49 [49 97 65 76]
第五趟排序後 13 27 38 49 49 [97 97 76]
第六趟排序後 13 27 38 49 49 76 [76 97]
第七趟排序後 13 27 38 49 49 76 76 [ 97]
最後排序結果 13 27 38 49 49 76 76 97

Procere SelectSort(Var R : FileType); //對R[1..N]進行直接選擇排序 //
Begin
for I := 1 To N - 1 Do //做N - 1趟選擇排序//
begin
K := I;
For J := I + 1 To N Do //在當前無序區R[I..N]中選最小的元素R[K]//
begin
If R[J] < R[K] Then K := J
end;
If K <>; I Then //交換R[I]和R[K] //
begin Temp := R[I]; R[I] := R[K]; R[K] := Temp; end;
end
End; //SelectSort //

三、冒泡排序(BubbleSort)
1. 基本思想:
兩兩比較待排序數據元素的大小,發現兩個數據元素的次序相反時即進行交換,直到沒有反序的數據元素為止。
2. 排序過程:
設想被排序的數組R〔1..N〕垂直豎立,將每個數據元素看作有重量的氣泡,根據輕氣泡不能在重氣泡之下的原則,從下往上掃描數組R,凡掃描到違反本原則的輕氣泡,就使其向上"漂浮",如此反復進行,直至最後任何兩個氣泡都是輕者在上,重者在下為止。
【示例】:
49 13 13 13 13 13 13 13
38 49 27 27 27 27 27 27
65 38 49 38 38 38 38 38
97 65 38 49 49 49 49 49
76 97 65 49 49 49 49 49
13 76 97 65 65 65 65 65
27 27 76 97 76 76 76 76
49 49 49 76 97 97 97 97

Procere BubbleSort(Var R : FileType) //從下往上掃描的起泡排序//
Begin
For I := 1 To N-1 Do //做N-1趟排序//
begin
NoSwap := True; //置未排序的標志//
For J := N - 1 DownTo 1 Do //從底部往上掃描//
begin
If R[J+1]< R[J] Then //交換元素//
begin
Temp := R[J+1]; R[J+1 := R[J]; R[J] := Temp;
NoSwap := False
end;
end;
If NoSwap Then Return//本趟排序中未發生交換,則終止演算法//
end
End; //BubbleSort//

四、快速排序(Quick Sort)
1. 基本思想:
在當前無序區R[1..H]中任取一個數據元素作為比較的"基準"(不妨記為X),用此基準將當前無序區劃分為左右兩個較小的無序區:R[1..I-1]和R[I+1..H],且左邊的無序子區中數據元素均小於等於基準元素,右邊的無序子區中數據元素均大於等於基準元素,而基準X則位於最終排序的位置上,即R[1..I-1]≤X.Key≤R[I+1..H](1≤I≤H),當R[1..I-1]和R[I+1..H]均非空時,分別對它們進行上述的劃分過程,直至所有無序子區中的數據元素均已排序為止。
2. 排序過程:
【示例】:
初始關鍵字 [49 38 65 97 76 13 27 49〕
第一次交換後 〔27 38 65 97 76 13 49 49〕
第二次交換後 〔27 38 49 97 76 13 65 49〕
J向左掃描,位置不變,第三次交換後 〔27 38 13 97 76 49 65 49〕
I向右掃描,位置不變,第四次交換後 〔27 38 13 49 76 97 65 49〕
J向左掃描 〔27 38 13 49 76 97 65 49〕
(一次劃分過程)

初始關鍵字 〔49 38 65 97 76 13 27 49〕
一趟排序之後 〔27 38 13〕 49 〔76 97 65 49〕
二趟排序之後 〔13〕 27 〔38〕 49 〔49 65〕76 〔97〕
三趟排序之後 13 27 38 49 49 〔65〕76 97
最後的排序結果 13 27 38 49 49 65 76 97
各趟排序之後的狀態

Procere Parttion(Var R : FileType; L, H : Integer; Var I : Integer);
//對無序區R[1,H]做劃分,I給以出本次劃分後已被定位的基準元素的位置 //
Begin
I := 1; J := H; X := R[I] ;//初始化,X為基準//
Repeat
While (R[J] >;= X) And (I < J) Do
begin
J := J - 1 //從右向左掃描,查找第1個小於 X的元素//
If I < J Then //已找到R[J] 〈X//
begin
R[I] := R[J]; //相當於交換R[I]和R[J]//
I := I + 1
end;
While (R[I] <= X) And (I < J) Do
I := I + 1 //從左向右掃描,查找第1個大於 X的元素///
end;
If I < J Then //已找到R[I] >; X //
begin R[J] := R[I]; //相當於交換R[I]和R[J]//
J := J - 1
end
Until I = J;
R[I] := X //基準X已被最終定位//
End; //Parttion //

Procere QuickSort(Var R :FileType; S,T: Integer); //對R[S..T]快速排序//
Begin
If S < T Then //當R[S..T]為空或只有一個元素是無需排序//
begin
Partion(R, S, T, I); //對R[S..T]做劃分//
QuickSort(R, S, I-1);//遞歸處理左區間R[S,I-1]//
QuickSort(R, I+1,T);//遞歸處理右區間R[I+1..T] //
end;
End; //QuickSort//

五、堆排序(Heap Sort)
1. 基本思想:
堆排序是一樹形選擇排序,在排序過程中,將R[1..N]看成是一顆完全二叉樹的順序存儲結構,利用完全二叉樹中雙親結點和孩子結點之間的內在關系來選擇最小的元素。
2. 堆的定義: N個元素的序列K1,K2,K3,...,Kn.稱為堆,當且僅當該序列滿足特性:
Ki≤K2i Ki ≤K2i+1(1≤ I≤ [N/2])

堆實質上是滿足如下性質的完全二叉樹:樹中任一非葉子結點的關鍵字均大於等於其孩子結點的關鍵字。例如序列10,15,56,25,30,70就是一個堆,它對應的完全二叉樹如上圖所示。這種堆中根結點(稱為堆頂)的關鍵字最小,我們把它稱為小根堆。反之,若完全二叉樹中任一非葉子結點的關鍵字均大於等於其孩子的關鍵字,則稱之為大根堆。
3. 排序過程:
堆排序正是利用小根堆(或大根堆)來選取當前無序區中關鍵字小(或最大)的記錄實現排序的。我們不妨利用大根堆來排序。每一趟排序的基本操作是:將當前無序區調整為一個大根堆,選取關鍵字最大的堆頂記錄,將它和無序區中的最後一個記錄交換。這樣,正好和直接選擇排序相反,有序區是在原記錄區的尾部形成並逐步向前擴大到整個記錄區。
【示例】:對關鍵字序列42,13,91,23,24,16,05,88建堆

Procere Sift(Var R :FileType; I, M : Integer);
//在數組R[I..M]中調用R[I],使得以它為完全二叉樹構成堆。事先已知其左、右子樹(2I+1 <=M時)均是堆//
Begin
X := R[I]; J := 2*I; //若J <=M, R[J]是R[I]的左孩子//
While J <= M Do //若當前被調整結點R[I]有左孩子R[J]//
begin
If (J < M) And R[J].Key < R[J+1].Key Then
J := J + 1 //令J指向關鍵字較大的右孩子//
//J指向R[I]的左、右孩子中關鍵字較大者//
If X.Key < R[J].Key Then //孩子結點關鍵字較大//
begin
R[I] := R[J]; //將R[J]換到雙親位置上//
I := J ; J := 2*I //繼續以R[J]為當前被調整結點往下層調整//
end;
Else
Exit//調整完畢,退出循環//
end
R[I] := X;//將最初被調整的結點放入正確位置//
End;//Sift//

Procere HeapSort(Var R : FileType); //對R[1..N]進行堆排序//
Begin
For I := N Div Downto 1 Do //建立初始堆//
Sift(R, I , N)
For I := N Downto 2 do //進行N-1趟排序//
begin
T := R[1]; R[1] := R[I]; R[I] := T;//將當前堆頂記錄和堆中最後一個記錄交換//
Sift(R, 1, I-1) //將R[1..I-1]重成堆//
end
End; //HeapSort//

六、幾種排序演算法的比較和選擇
1. 選取排序方法需要考慮的因素:
(1) 待排序的元素數目n;
(2) 元素本身信息量的大小;
(3) 關鍵字的結構及其分布情況;
(4) 語言工具的條件,輔助空間的大小等。
2. 小結:
(1) 若n較小(n <= 50),則可以採用直接插入排序或直接選擇排序。由於直接插入排序所需的記錄移動操作較直接選擇排序多,因而當記錄本身信息量較大時,用直接選擇排序較好。
(2) 若文件的初始狀態已按關鍵字基本有序,則選用直接插入或冒泡排序為宜。
(3) 若n較大,則應採用時間復雜度為O(nlog2n)的排序方法:快速排序、堆排序或歸並排序。 快速排序是目前基於比較的內部排序法中被認為是最好的方法。
(4) 在基於比較排序方法中,每次比較兩個關鍵字的大小之後,僅僅出現兩種可能的轉移,因此可以用一棵二叉樹來描述比較判定過程,由此可以證明:當文件的n個關鍵字隨機分布時,任何藉助於"比較"的排序演算法,至少需要O(nlog2n)的時間。
(5) 當記錄本身信息量較大時,為避免耗費大量時間移動記錄,可以用鏈表作為存儲結構。

閱讀全文

與c語言小根堆演算法實現相關的資料

熱點內容
php內核源碼入口 瀏覽:910
java內存圖片 瀏覽:227
電器原理pdf 瀏覽:273
谷歌注冊無法連接網路連接伺服器地址 瀏覽:428
在識貨app上怎麼聯系客服 瀏覽:470
javac數據類型 瀏覽:480
kmp演算法演算法導論 瀏覽:193
單反照片批量壓縮 瀏覽:340
javazip壓縮目錄 瀏覽:712
89c52單片機晶振 瀏覽:206
pdf轉jpgmac 瀏覽:799
65壓縮機多少錢 瀏覽:120
同類型服務app如何脫穎而出 瀏覽:762
mtm月線金叉選股預警公式源碼 瀏覽:227
javasapwebservice 瀏覽:709
程序員老了去做什麼 瀏覽:404
linux小括弧 瀏覽:773
已加密的u盤怎麼清空 瀏覽:433
怎麼拿到伺服器許可權 瀏覽:193
延時攝影app如何保存 瀏覽:195