導航:首頁 > 源碼編譯 > 雙目特徵匹配的演算法

雙目特徵匹配的演算法

發布時間:2023-07-18 13:08:25

㈠ 人臉識別系統的技術原理

人臉識別技術包含三個部分:
(1)人臉檢測
面貌檢測是指在動態的場景與復雜的背景中判斷是否存在面像,並分離出這種面像。一般有下列幾種方法:
①參考模板法
首先設計一個或數個標准人臉的模板,然後計算測試採集的樣品與標准模板之間的匹配程度,並通過閾值來判斷是否存在人臉;
②人臉規則法
由於人臉具有一定的結構分布特徵,所謂人臉規則的方法即提取這些特徵生成相應的規則以判斷測試樣品是否包含人臉;
③樣品學習法
這種方法即採用模式識別中人工神經網路的方法,即通過對面像樣品集和非面像樣品集的學習產生分類器;
④膚色模型法
這種方法是依據面貌膚色在色彩空間中分布相對集中的規律來進行檢測。
⑤特徵子臉法
這種方法是將所有面像集合視為一個面像子空間,並基於檢測樣品與其在子孔間的投影之間的距離判斷是否存在面像。
值得提出的是,上述5種方法在實際檢測系統中也可綜合採用。
(2)人臉跟蹤
面貌跟蹤是指對被檢測到的面貌進行動態目標跟蹤。具體採用基於模型的方法或基於運動與模型相結合的方法。此外,利用膚色模型跟蹤也不失為一種簡單而有效的手段。
(3)人臉比對
面貌比對是對被檢測到的面貌像進行身份確認或在面像庫中進行目標搜索。這實際上就是說,將采樣到的面像與庫存的面像依次進行比對,並找出最佳的匹配對象。所以,面像的描述決定了面像識別的具體方法與性能。目前主要採用特徵向量與面紋模板兩種描述方法:
①特徵向量法
該方法是先確定眼虹膜、鼻翼、嘴角等面像五官輪廓的大小、位置、距離等屬性,然後再計算出它們的幾何特徵量,而這些特徵量形成一描述該面像的特徵向量。
②面紋模板法
該方法是在庫中存貯若干標准面像模板或面像器官模板,在進行比對時,將采樣面像所有象素與庫中所有模板採用歸一化相關量度量進行匹配。此外,還有採用模式識別的自相關網路或特徵與模板相結合的方法。
人臉識別技術的核心實際為「局部人體特徵分析」和「圖形/神經識別演算法。」這種演算法是利用人體面部各器官及特徵部位的方法。如對應幾何關系多數據形成識別參數與資料庫中所有的原始參數進行比較、判斷與確認。一般要求判斷時間低於1秒。 一般分三步:
(1)首先建立人臉的面像檔案。即用攝像機採集單位人員的人臉的面像文件或取他們的照片形成面像文件,並將這些面像文件生成面紋(Faceprint)編碼貯存起來。
(2)獲取當前的人體面像。即用攝像機捕捉的當前出入人員的面像,或取照片輸入,並將當前的面像文件生成面紋編碼。
(3)用當前的面紋編碼與檔案庫存的比對。即將當前的面像的面紋編碼與檔案庫存中的面紋編碼進行檢索比對。上述的「面紋編碼」方式是根據人臉臉部的本質特徵和開頭來工作的。這種面紋編碼可以抵抗光線、皮膚色調、面部毛發、發型、眼鏡、表情和姿態的變化,具有強大的可靠性,從而使它可以從百萬人中精確地辯認出某個人。人臉的識別過程,利用普通的圖像處理設備就能自動、連續、實時地完成。

㈡ 計算機視覺演算法工程師筆試主要什麼內容

你好,領學網為你解答:
計算機視覺部分:
1、考察特徵點匹配演算法,輸入兩幅圖像中的特徵點對,輸出匹配的特徵點對,(128維描述子)距離計算函數已給出無需考慮復雜度。編寫偽代碼,分析演算法復雜度;
2、考察圖像旋轉。左邊圖像時旋轉一定角度後的圖像(有黑邊),右邊為正常圖像。已知兩幅圖像都為WxH,以及左圖像與四邊的切點A1A2A3A4,設計旋轉演算法使左圖像變換矯正成右圖像,編寫偽代碼,分析演算法復雜度及優缺點;
3、主要考察雙目視覺中的標定知識。給出了雙目視覺的成像原理圖及相關定理和表達。第一小題,需要證明x'Fx=0 x'x為左右圖像中的匹配點對,並要求給出F矩陣的秩;第二小題要求推導出最少可由多少對左右圖像中匹配點可以推導出F矩陣;
4、要求寫出圖像處理和計算機視覺在無人飛行器中的3個重要應用。給出理由和解決方案並分析。
圖像處理部分:
1、主要考察一維中值濾波,退化為區間濾波 編寫偽代碼,分析演算法復雜度;
2、主要考察二維中值濾波,編寫偽代碼,分析演算法復雜度;
3、如何去除脈沖雜訊,圖像中有大量隨機產生的255和0雜訊;
4、考察加權中值濾波公式推導以及一維加權中值濾波
控制部分:
對象舉例均為四旋翼無人飛行器,各題目要求設計控制器,給出控制率,還有觀測方案設計等等;有一題比較簡單就是說明PID的各部分含義以及如何調節。
希望幫到你!

㈢ 雙目視覺測距原理

單目測距原理:

先通過圖像匹配進行目標識別(各種車型、行人、物體等),再通過目標在圖像中的大小去估算目標距離。這就要求在估算距離之前首先對目標進行准確識別,是汽車還是行人,是貨車、SUV還是小轎車。准確識別是准確估算距離的第一步。要做到這一點,就需要建立並不斷維護一個龐大的樣本特徵資料庫,保證這個資料庫包含待識別目標的全部特徵數據。比如在一些特殊地區,為了專門檢測大型動物,必須先行建立大型動物的資料庫;而對於另外某些區域存在一些非常規車型,也要先將這些車型的特徵數據加入到資料庫中。如果缺乏待識別目標的特徵數據,就會導致系統無法對這些車型、物體、障礙物進行識別,從而也就無法准確估算這些目標的距離。

單/雙目方案的優點與難點

從上面的介紹,單目系統的優勢在於成本較低,對計算資源的要求不高,系統結構相對簡單;缺點是:(1)需要不斷更新和維護一個龐大的樣本資料庫,才能保證系統達到較高的識別率;(2)無法對非標准障礙物進行判斷;(3)距離並非真正意義上的測量,准確度較低。

雙目檢測原理:

通過對兩幅圖像視差的計算,直接對前方景物(圖像所拍攝到的范圍)進行距離測量,而無需判斷前方出現的是什麼類型的障礙物。所以對於任何類型的障礙物,都能根據距離信息的變化,進行必要的預警或制動。雙目攝像頭的原理與人眼相似。人眼能夠感知物體的遠近,是由於兩隻眼睛對同一個物體呈現的圖像存在差異,也稱「視差」。物體距離越遠,視差越小;反之,視差越大。視差的大小對應著物體與眼睛之間距離的遠近,這也是3D電影能夠使人有立體層次感知的原因。

上圖中的人和椰子樹,人在前,椰子樹在後,最下方是雙目相機中的成像。其中,右側相機成像中人在樹的左側,左側相機成像中人在樹的右側,這是因為雙目的角度不一樣。再通過對比兩幅圖像就可以知道人眼觀察樹的時候視差小,而觀察人時視差大。因為樹的距離遠,人的距離近。這就是雙目三角測距的原理。雙目系統對目標物體距離感知是一種絕對的測量,而非估算。

理想雙目相機成像模型

根據三角形相似定律:

根據上述推導,要求得空間點P離相機的距離(深度)z,必須知道:
1、相機焦距f,左右相機基線b(可以通過先驗信息或者相機標定得到)。
2、視差 :,即左相機像素點(xl, yl)和右相機中對應點(xr, yr)的關系,這是雙目視覺的核心問題。

重點來看一下視差(disparity),視差是同一個空間點在兩個相機成像中對應的x坐標的差值,它可以通過編碼成灰度圖來反映出距離的遠近,離鏡頭越近的灰度越亮;

極線約束

對於左圖中的一個像素點,如何確定該點在右圖中的位置?需要在整個圖像中地毯式搜索嗎?當然不用,此時需要用到極線約束。

如上圖所示。O1,O2是兩個相機,P是空間中的一個點,P和兩個相機中心點O1、O2形成了三維空間中的一個平面PO1O2,稱為極平面(Epipolar plane)。極平面和兩幅圖像相交於兩條直線,這兩條直線稱為極線(Epipolar line)。

P在相機O1中的成像點是P1,在相機O2中的成像點是P2,但是P的位置是未知的。我們的目標是:對於左圖的P1點,尋找它在右圖中的對應點P2,這樣就能確定P點的空間位置。

極線約束(Epipolar Constraint)是指當空間點在兩幅圖像上分別成像時,已知左圖投影點p1,那麼對應右圖投影點p2一定在相對於p1的極線上,這樣可以極大的縮小匹配范圍。即P2一定在對應極線上,所以只需要沿著極線搜索便可以找到P1的對應點P2。

㈣ 機器視覺演算法有哪些

機器視覺演算法基本步驟;
1、圖像數據解碼
2、圖像特徵提取
3、識別圖像中目標。
機器視覺是人工智慧正在快速發展的一個分支。
簡單說來,機器視覺就是用機器代替人眼來做測量和判斷。
機器視覺系統是通過機器視覺產品(即圖像攝取裝置,分CMOS和CCD兩種)將被攝取目標轉換成圖像信號,傳送給專用的圖像處理系統,得到被攝目標的形態信息,根據像素分布和亮度、顏色等信息,轉變成數字化信號;圖像系統對這些信號進行各種運算來抽取目標的特徵,進而根據判別的結果來控制現場的設備動作。

現在做視覺檢測的公司比較多,國內國外都有,許多視覺算是很好的。
能提供完整的機器視覺軟體解決方案,也可以為客戶提供演算法級的定製,覆蓋所有的工業應用領域,適用范圍比較廣。機器視覺的應用會越來越多,因為計算的水平越來越高,可以處理更復雜的視覺演算法;其實好多的東西,包括現在流行的GPS,最早都是外國的公司在做,程序都是中國人在做外包;
光機電的應用我個人覺得已經很成熟了,不會再有新東西。

㈤ sift演算法是什麼

Sift演算法是David Lowe於1999年提出的局部特徵描述子,並於2004年進行了更深入的發展和完善。Sift特徵匹配演算法可以處理兩幅圖像之間發生平移、旋轉、仿射變換情況下的匹配問題,具有很強的匹配能力。

這一演算法的靈感也十分的直觀,人眼觀測兩張圖片是否匹配時會注意到其中的典型區域(特徵點部分),如果我們能夠實現這一特徵點區域提取過程,再對所提取到的區域進行描述就可以實現特徵匹配了。

sift演算法的應用

SIFT演算法目前在軍事、工業和民用方面都得到了不同程度的應用,其應用已經滲透了很多領域,典型的應用如下:物體識別;機器人定位與導航;圖像拼接;三維建模;手勢識別;視頻跟蹤;筆記鑒定;指紋與人臉識別;犯罪現場特徵提取。

㈥ matlab雙目測距中怎樣把攝像機標定後的內外參數和視差圖結合起來計算深度距離

你用的是雙面立體相機配置嗎?如果是,你需要標定左右兩個相機的內部參數,即焦距,像素物理尺寸,還有兩個相機間的三維平移,旋轉量。如果你不做三維重建的話,就不需要得到外部參數。得到相機內部參數,就可以矯正左右兩幅圖像對,然後使用立體匹配演算法得到目標的視差圖像,然後用你得到的,fc,cc參數,用三角法則計算出目標點到相機平面的距離。三角法則:z=f*b/d。f是焦距,b是兩相機間的橫向距離,d是立體匹配得到的視差值,即目標像素點在左右兩相機平面x方向的坐標差值。

閱讀全文

與雙目特徵匹配的演算法相關的資料

熱點內容
dvd光碟存儲漢子演算法 瀏覽:757
蘋果郵件無法連接伺服器地址 瀏覽:962
phpffmpeg轉碼 瀏覽:671
長沙好玩的解壓項目 瀏覽:142
專屬學情分析報告是什麼app 瀏覽:564
php工程部署 瀏覽:833
android全屏透明 瀏覽:736
阿里雲伺服器已開通怎麼辦 瀏覽:803
光遇為什麼登錄時伺服器已滿 瀏覽:302
PDF分析 瀏覽:484
h3c光纖全工半全工設置命令 瀏覽:143
公司法pdf下載 瀏覽:381
linuxmarkdown 瀏覽:350
華為手機怎麼多選文件夾 瀏覽:683
如何取消命令方塊指令 瀏覽:349
風翼app為什麼進不去了 瀏覽:778
im4java壓縮圖片 瀏覽:362
數據查詢網站源碼 瀏覽:150
伊克塞爾文檔怎麼進行加密 瀏覽:892
app轉賬是什麼 瀏覽:163