A. pso的離散演算法
很多優化問題涉及到離散或二值的變數,典型的例子包括調度問題或路由問題。而PSO演算法的更新公式和過程是面向連續空間並為其設計的,因此需要做一些修改使之適應離散空間的情況。編碼的修改可能很簡單,難點在於定義速度的意義和確定軌跡的變化。
Kennedy定義了第一個離散二進製版本的PSO演算法。微粒使用二進制字元串進行編碼。通過使用sigmoid函數,速度被限制在[0, 1]區間之內,並被解釋為「概率的變化」。Yang對該方法在量子空間進行了擴展。
Mohan提出了幾種二進制方法(直接方法、量子方法、正則方法、偏差向量方法以及混合方法),但是從有限的實驗中沒有得出什麼結論。Clerc對一些專用於某些約束優化問題如TSP問題的PSO演算法變種進行了試驗,結果顯示該方法比較有前途。Pang使用模糊矩陣來表示微粒的位置和速度,對PSO演算法的算符進行了重定義,並將其應用到TSP問題的求解。Pampara將PSO演算法與信號處理中的角調制技術結合起來,將高維二進制問題降維為一個在連續空間中定義的四維問題,並通過求解該四維問題來獲得原問題的解。Afshinmanesh重新定義了離散PSO演算法中的加法與乘法,並使用人工免疫系統中的陰性選擇來實現速度限制Vmax。
Hu提出了一種改進PSO演算法來處理排列問題。微粒被定義為一組特定值的排列,速度基於兩個微粒的相似度重新定義,微粒根據由它們的速度所定義的隨機率來變換到一個新的排列。引入了一個變異因子來防止當前的pBest陷入局部最小。在n皇後問題上的初步研究顯示改進的PSO演算法在解決約束滿意問題方面很有前途。
Migliore對原始的二進制PSO演算法進行了一些改進,提出了可變行為二進制微粒群演算法(VB-BPSO)和可變動態特性二進制微粒群演算法(VD-BPSO)。VB-BPSO演算法按照連續PSO演算法的速度更新公式的思想設計了一個新的速度更新公式,用來確定微粒位置向量每一位為1的概率。而VD-BPSO演算法則是根據一定規則在兩組不同參數確定的VB-BPSO演算法之間切換。Migliore應用該演算法設計出一種簡單魯棒的自適應無源天線。
Parsopoulos以標准函數為例測試微粒群優化演算法解決整數規劃問題的能力。Salman將任務分配問題抽象為整數規劃模型並提出基於微粒群優化演算法的解決方法。兩者對迭代產生的連續解均進行舍尾取整後評價其質量。但是PSO演算法生成的連續解與整數規劃問題的目標函數評價值之間存在多對一的映射,以整型變數表示的目標函數不能准確反映演算法中連續解的質量,而由此導致的冗餘解空間與相應的冗餘搜索降低了演算法的收斂效率。
高尚採用交叉策略和變異策略,將PSO演算法用來解決集合劃分問題。趙傳信重新定義了微粒群位置和速度的加法與乘法操作,並將PSO演算法應用到0/1背包問題求解中。EL-Gallad在PSO演算法中引入探索和勘探兩個運算元,用於求解排序問題。Firpi提出了BPSO演算法的一種保證收斂的版本(但是並未證明其保證收斂性),並將其應用到特徵選擇問題。
上述離散PSO演算法都是間接的優化策略,根據概率而非演算法本身確定二進制變數,未能充分利用PSO演算法的性能。在處理整數變數時,PSO演算法有時候很容易陷入局部最小。原始PSO演算法的思想是從個體和同伴的經驗進行學習,離散PSO演算法也應該借鑒該思想。高海兵基於傳統演算法的速度—位移更新操作,在分析微粒群優化機理的基礎上提出了廣義微粒群優化模型(GPSO),使其適用於解決離散及組合優化問題。GPSO 模型本質仍然符合微粒群優化機理,但是其微粒更新策略既可根據優化問題的特點設計,也可實現與已有方法的融合。基於類似的想法,Goldbarg將局部搜索和路徑重連過程定義為速度運算元,來求解TSP問題。
B. pso的約束優化
約束優化問題的目標是在滿足一組線性或非線性約束的條件下,找到使得適應值函數最優的解。對於約束優化問題,需要對原始PSO演算法進行改進來處理約束。
一種簡單的方法是,所有的微粒初始化時都從可行解開始,在更新過程中,僅需記住在可行空間中的位置,拋棄那些不可行解即可。該方法的缺點是對於某些問題,初始的可行解集很難找到。或者,當微粒位置超出可行范圍時,可將微粒位置重置為之前找到的最好位置,這種簡單的修正就能成功找到一系列Benchmark問題的最優解。Paquet讓微粒在運動過程中保持線性約束,從而得到一種可以解決線性約束優化問題的PSO演算法。Pulido引入擾動運算元和約束處理機制來處理約束優化問題。Park提出一種改進的PSO演算法來處理等式約束和不等式約束。
另一種簡單的方法是使用懲罰函數將約束優化問題轉變為無約束優化問題,之後再使用PSO演算法來進行求解。Shi將約束優化問題轉化為最小—最大問題,並使用兩個共同進化的微粒群來對其求解。譚瑛提出一種雙微粒群的PSO演算法,通過在微粒群間引入目標信息與約束信息項來解決在滿足約束條件下求解目標函數的最優化問題。Zavala在PSO演算法中引入兩個擾動運算元,用來解決單目標約束優化問題。
第三種方法是採用修復策略,將微粒發現的違反約束的解修復為滿足約束的解。
約束滿足
PSO演算法設計的初衷是用來求解連續問題,,對微粒的位置和速度計算公式進行了重新定義,使用變數和它的關聯變數存在的沖突數作為微粒的適應度函數,並指出該演算法在求解約束滿足問題上具有一定優勢。Lin在Schoofs工作的基礎上研究了使用PSO演算法來求解通用的n元約束滿足問題。楊輕雲在Schoofs工作的基礎上對適應度函數進行了改進,把最大度靜態變數序列引入到適應度函數的計算中。
C. 粒子群優化演算法
姓名:楊晶晶 學號:21011210420 學院:通信工程學院
【嵌牛導讀】
傳統的多目標優化方法是將多目標問題通過加權求和轉化為單目標問題來處理的,而粒子演算法主要是解決一些多目標優化問題的(例如機械零件的多目標設計優化),其優點是容易實現,精度高,收斂速度快。
【嵌牛鼻子】粒子群演算法的概念、公式、調參以及與遺傳演算法的比較。
【嵌牛提問】什麼是粒子群演算法?它的計算流程是什麼?與遺傳演算法相比呢?
【嵌牛正文】
1. 概念
粒子群優化演算法(PSO:Particle swarm optimization) 是一種進化計算技術(evolutionary computation),源於對鳥群捕食的行為研究。
粒子群優化演算法的基本思想:是通過群體中個體之間的協作和信息共享來尋找最優解。
PSO的優勢:在於簡單容易實現並且沒有許多參數的調節。目前已被廣泛應用於函數優化、神經網路訓練、模糊系統控制以及其他遺傳演算法的應用領域。
2. 演算法
2.1 問題抽象
鳥被抽象為沒有質量和體積的微粒(點),並延伸到N維空間,粒子i在N維空間的位置表示為矢量Xi=(x1,x2,…,xN),飛行速度表示為矢量Vi=(v1,v2,…,vN)。每個粒子都有一個由目標函數決定的適應值(fitness value),並且知道自己到目前為止發現的最好位置(pbest)和現在的位置Xi。這個可以看作是粒子自己的飛行經驗。除此之外,每個粒子還知道到目前為止整個群體中所有粒子發現的最好位置(gbest)(gbest是pbest中的最好值),這個可以看作是粒子同伴的經驗。粒子就是通過自己的經驗和同伴中最好的經驗來決定下一步的運動。
2.2 更新規則
PSO初始化為一群隨機粒子(隨機解)。然後通過迭代找到最優解。在每一次的迭代中,粒子通過跟蹤兩個「極值」(pbest,gbest)來更新自己。在找到這兩個最優值後,粒子通過下面的公式來更新自己的速度和位置。
公式(1)的第一部分稱為【記憶項】,表示上次速度大小和方向的影響;公式(1)的第二部分稱為【自身認知項】,是從當前點指向粒子自身最好點的一個矢量,表示粒子的動作來源於自己經驗的部分;公式(1)的第三部分稱為【群體認知項】,是一個從當前點指向種群最好點的矢量,反映了粒子間的協同合作和知識共享。粒子就是通過自己的經驗和同伴中最好的經驗來決定下一步的運動。
以上面兩個公式為基礎,形成了PSO的標准形式。
公式(2)和 公式(3)被視為標准PSO演算法。
2.3 標准PSO演算法流程
標准PSO演算法的流程:
1)初始化一群微粒(群體規模為N),包括隨機位置和速度;
2)評價每個微粒的適應度;
3)對每個微粒,將其適應值與其經過的最好位置pbest作比較,如果較好,則將其作為當前的最好位置pbest;
4)對每個微粒,將其適應值與其經過的最好位置gbest作比較,如果較好,則將其作為當前的最好位置gbest;
5)根據公式(2)、(3)調整微粒速度和位置;
6)未達到結束條件則轉第2)步。
迭代終止條件根據具體問題一般選為最大迭代次數Gk或(和)微粒群迄今為止搜索到的最優位置滿足預定最小適應閾值。
公式(2)和(3)中pbest和gbest分別表示微粒群的局部和全局最優位置。
當C1=0時,則粒子沒有了認知能力,變為只有社會的模型(social-only):
被稱為全局PSO演算法。粒子有擴展搜索空間的能力,具有較快的收斂速度,但由於缺少局部搜索,對於復雜問題
比標准PSO 更易陷入局部最優。
當C2=0時,則粒子之間沒有社會信息,模型變為只有認知(cognition-only)模型:
被稱為局部PSO演算法。由於個體之間沒有信息的交流,整個群體相當於多個粒子進行盲目的隨機搜索,收斂速度慢,因而得到最優解的可能性小。
2.4 參數分析
參數:群體規模N,慣性因子 ,學習因子c1和c2,最大速度Vmax,最大迭代次數Gk。
群體規模N:一般取20~40,對較難或特定類別的問題可以取到100~200。
最大速度Vmax:決定當前位置與最好位置之間的區域的解析度(或精度)。如果太快,則粒子有可能越過極小點;如果太慢,則粒子不能在局部極小點之外進行足夠的探索,會陷入到局部極值區域內。這種限制可以達到防止計算溢出、決定問題空間搜索的粒度的目的。
權重因子:包括慣性因子和學習因子c1和c2。使粒子保持著運動慣性,使其具有擴展搜索空間的趨勢,有能力探索新的區域。c1和c2代表將每個粒子推向pbest和gbest位置的統計加速項的權值。較低的值允許粒子在被拉回之前可以在目標區域外徘徊,較高的值導致粒子突然地沖向或越過目標區域。
參數設置:
1)如果令c1=c2=0,粒子將一直以當前速度的飛行,直到邊界。很難找到最優解。
2)如果=0,則速度只取決於當前位置和歷史最好位置,速度本身沒有記憶性。假設一個粒子處在全局最好位置,它將保持靜止,其他粒子則飛向它的最好位置和全局最好位置的加權中心。粒子將收縮到當前全局最好位置。在加上第一部分後,粒子有擴展搜索空間的趨勢,這也使得的作用表現為針對不同的搜索問題,調整演算法的全局和局部搜索能力的平衡。較大時,具有較強的全局搜索能力;較小時,具有較強的局部搜索能力。
3)通常設c1=c2=2。Suganthan的實驗表明:c1和c2為常數時可以得到較好的解,但不一定必須等於2。Clerc引入收斂因子(constriction factor) K來保證收斂性。
通常取為4.1,則K=0.729.實驗表明,與使用慣性權重的PSO演算法相比,使用收斂因子的PSO有更快的收斂速度。其實只要恰當的選取和c1、c2,兩種演算法是一樣的。因此使用收斂因子的PSO可以看作使用慣性權重PSO的特例。
恰當的選取演算法的參數值可以改善演算法的性能。
3. PSO與其它演算法的比較
3.1 遺傳演算法和PSO的比較
1)共性:
(1)都屬於仿生演算法。
(2)都屬於全局優化方法。
(3)都屬於隨機搜索演算法。
(4)都隱含並行性。
(5)根據個體的適配信息進行搜索,因此不受函數約束條件的限制,如連續性、可導性等。
(6)對高維復雜問題,往往會遇到早熟收斂和收斂 性能差的缺點,都無法保證收斂到最優點。
2)差異:
(1)PSO有記憶,好的解的知識所有粒子都保 存,而GA(Genetic Algorithm),以前的知識隨著種群的改變被改變。
(2)PSO中的粒子僅僅通過當前搜索到最優點進行共享信息,所以很大程度上這是一種單共享項信息機制。而GA中,染色體之間相互共享信息,使得整個種群都向最優區域移動。
(3)GA的編碼技術和遺傳操作比較簡單,而PSO相對於GA,沒有交叉和變異操作,粒子只是通過內部速度進行更新,因此原理更簡單、參數更少、實現更容易。
(4)應用於人工神經網路(ANN)
GA可以用來研究NN的三個方面:網路連接權重、網路結構、學習演算法。優勢在於可處理傳統方法不能處理的問題,例如不可導的節點傳遞函數或沒有梯度信息。
GA缺點:在某些問題上性能不是特別好;網路權重的編碼和遺傳運算元的選擇有時較麻煩。
已有利用PSO來進行神經網路訓練。研究表明PSO是一種很有潛力的神經網路演算法。速度較快且有較好的結果。且沒有遺傳演算法碰到的問題。
D. 急求:微粒群演算法的改進(程序資料)
1 多目標優化
相對傳統多目標優化方法, PSO在求解多目標問題上具有很大優勢。首先, PSO的高效搜索能力有利於得到多目標意義下的最優解;其次, PSO通過代表整個解集的種群按內在的並行方式同時搜索多個非劣解,因此容易搜索到多個Pareto 最優解; 再則, PSO的通用性使其適合於處理所有類型的目標函數和約束;另外, PSO 很容易與傳統方法相結合,進而提出解決特定問題的高效方法。就PSO 本身而言,為了更好地解決多目標優化問題,必須解決全局最優粒子和個體最優粒子的選擇問題。對於全局最優粒子的選擇,一方面要求演算法具有較好的收斂速度,另一方面要求所得解在Pareto邊界上具有一定的分散性。對於個體最優粒子的選擇,則要求較小的計算復雜性,即僅通過較少的比較次數達到非
劣解的更新。迄今,基於PSO的多目標優化主要有以下幾種
思路:
(1)向量法和權重法。文獻[ 20 ]利用固定權重法、適應性權重法和向量評價法,首次將PSO 用於解決MO問題。然而對於給定的優化問題,權重法通常很難獲得一組合適的權重,而向量評價法往往無法給出MO問題的滿意解。
(2)基於Pareto的方法。文獻[ 21 ]將Pareto排序機制和PSO相結合來處理多目標優化問題,通過Pareto排序法選擇一組精英解,並採用輪盤賭方式從中選擇全局最優粒子。盡管輪盤賭選擇機制設計的目的是使所有Pareto個體的選擇概率相同,但是實際上只有少數個體得到較大的選擇概率,因此不利於維持種群的多樣性;文獻[ 22 ]通過在PSO中引入Pareto競爭機制和微粒知識庫來選擇全局最優粒子。由於非劣解是將候選個體與從種群中隨機選出的比較集進行比較來確定的,因此該演算法成功與否就取決於比較集規模參數的設定。如果這個參數太小,該過程從種群中選出的非劣個體可能過少;如果這個參數太大,則可能發生早熟收斂現象。
(3)距離法。文獻[ 23 ]根據個體當前解與Pa2reto解之間的距離來分配其適應值,從而選擇全局最優粒子。由於距離法需要初始化潛在解,如果初始潛在值太大,不同解的適應值的差別則不明顯。這將導致選擇壓力過小或個體均勻分布,從而導致PSO演算法收斂非常緩慢。
(4)鄰域法。文獻[ 24 ]提出一種基於動態鄰域的選擇策略,將一個目標定義為優化目標,而將其它所有目標定義為鄰域目標,進而提出了選擇全局最優粒子的動態鄰域策略,但該方法對優化目標的選擇以及鄰域目標函數的排序較敏感。
(5)多種群法。文獻[ 25 ]將種群分為多個子種群,每個子種群單獨進行PSO 運算,各個子種群之間通過信息交換來搜索Pareto最優解。但是由於需要增加微粒數目而增加了計算量。
(6)非優勢排序法。文獻[ 26 ]利用非優勢排序的方法選擇全局最優粒子。該方法在整個種群中,比較微粒的個體最優粒子與其後代,有利於提供合適的選擇壓力,同時使用小生境技術提高種群多樣性。然而在整個種群中比較所有微粒的個體最優粒子與其後代,其本質不利於種群多樣性,容易形成早熟。另外,文獻[ 27 ]將博弈理論中的Maximin策略引入PSO來解決多MO問題。利用Maximin策略確定微粒的適應值可以很好地確定Pareto最優解而不需要聚類和小生境技術。
2 約束優化
近年來, PSO演算法在約束優化方面也取得了一定進展。基於PSO的約束優化工作主要分為兩類: ①罰函數法; ②設計特定的進化操作或約束修正因子。文獻[ 28 ]採用罰函數法,利用非固定多段映射罰函數對約束優化問題進行轉化,再利用PSO求解轉化後的問題,模擬結果顯示PSO相對進化策略和遺傳演算法有優越性,但其罰函數的設計過於復雜,不利於求解;文獻[ 29 ]採用可行解保留策略處理約束,即一方面更新存儲區時所有粒子僅保留可行的解,另一方面在初始化階段所有粒子均從可行解空間取值,然而初始可行解空間對於許多問題是很難確定的;文獻[ 30 ]提出了具有多層信息共享策略的微粒群原理來處理約束,根據約束矩陣採用多層Pareto排序機制來產生優良粒子,進而用一些優良的粒子來決定其餘個體的搜索方向。
3 離散優化對於離散優化而言,解空間是離散點的集合,而非連續區域,因此利用PSO解決離散優化問題就必須修正速度和位置更新公式,或者是對問題進行變形。目前,基於PSO的離散優化工作可分為如下三類:
(1)將速度作為位置變化的概率。文獻[ 31 ]首次提出了離散二值PSO。其微粒位置編碼採用二進制方式,通過採用Sigmoid函數將速度約束於[ 0, 1 ]區間,來代表微粒位置取1的概率;文獻[ 32 ]對文獻
[ 31 ]中的方法進行改進,用於解決置換排列問題。其中微粒用置換排列表示,而速度則根據兩個粒子的相似度來定義,決定微粒位置變化的概率,同時還引入變異操作防止最優粒子陷入局部極小。
(2)重新定義PSO操作。文獻[ 33 ]通過重新定義微粒的位置、速度、以及它們之間的加減乘操作,提出一種新的離散PSO,並用於求解旅行商問題。盡管該演算法的效果較差,但是提供了一種解決組合優化問題的新的思路。
(3)直接將連續PSO用於離散情況。文獻[ 34 ]利用連續PSO 解決分布式計算機任務分配問題。為了將實數轉化為正整數,把實數的符號和小數部
分去掉。結果表明該方法在解的質量和演算法速度方面,要優於遺傳演算法。
4 動態優化
在許多實際工程問題中,優化的環境是不確定的,或者是動態的。因此,優化演算法必須具備隨環境動態變化而對最優解作出相應調整的能力,或者是演算法具有一定的魯棒性。文獻[ 35 ]首次提出利用PSO跟蹤動態系統;文獻[ 36 ]提出用自適應PSO來自動跟蹤動態系統的變化,該方法通過對種群中最好微粒的檢測和對微粒重新初始化, 有效增強了PSO對系統變化的跟蹤能力;文獻[ 37 ]為了處理快速變化的動態環境,在微粒速度更新公式中增加了一項變化項,從而無需檢測環境的變化就可以跟蹤環境。盡管該方面的研究成果至今較少,但不容質疑這是一項重要的研究內容。
微粒群演算法的MATLAB程序實現
初始化粒子群;
DO
For每個粒子
計算其適應度;
If (適應度優於粒子歷史最佳值)
用Xi更新歷史最佳個體Pi;
End
選取當前粒子群中最佳粒子;
If (當前最佳粒子優於群歷史最佳粒子)
用當前群最佳粒子更新Pg;
For每個粒子
按式①更新粒子速度;
按式②更新粒子位置;
End
While最大迭代數未達到或最小誤差未達到。
E. 如何用粒子群優化(PSO)演算法實現多目標優化
粒子群演算法,也稱粒子群優化演算法(ParticleSwarmOptimization),縮寫為PSO,是近年來發展起來的一種新的進化演算法(EvolutionaryAlgorithm-EA)。PSO演算法屬於進化演算法的一種,和模擬退火演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質,但它比遺傳演算法規則更為簡單,它沒有遺傳演算法的「交叉」(Crossover)和「變異」(Mutation)操作,它通過追隨當前搜索到的最優值來尋找全局最優。這種演算法以其實現容易、精度高、收斂快等優點引起了學術界的重視,並且在解決實際問題中展示了其優越性。粒子群演算法是一種並行演算法。
F. pso的多目標優化
在多目標優化問題中,每個目標函數可以分別獨立進行優化,然後為每個目標找到最優值。但是,很少能找到對所有目標都是最優的完美解,因為目標之間經常是互相沖突的,只能找到Pareto最優解。
PSO演算法中的信息共享機制與其他基於種群的優化工具有很大的不同。在遺傳演算法(GA)中,染色體通過交叉互相交換信息,是一種雙向信息共享機制。但是在PSO演算法中,只有gBest(或nBest)給其他微粒提供信息,是一種單向信息共享機制。由於點吸引特性,傳統的PSO演算法不能同時定位構成Pareto前鋒的多個最優點。雖然通過對所有目標函數賦予不同的權重將其組合起來並進行多次運行,可以獲得多個最優解,但是還是希望有方法能夠一次同時找到一組Pareto最優解。
在PSO演算法中,一個微粒是一個獨立的智能體,基於其自身和同伴的經驗來搜索問題空間。前者為微粒更新公式中的認知部分,後者為社會部分,這二者在引導微粒的搜索方面都有關鍵的作用。因此,選擇適當的社會和認知引導者(gBest和pBest)就是MO-PSO演算法的關鍵點。認知引導者的選擇和傳統PSO演算法應遵循相同的規則,唯一的區別在於引導者應按照Pareto支配性來確定。社會引導者的選擇包括兩個步驟。第一步是建立一個從中選取引導者的候選池。在傳統PSO演算法中,引導者從鄰居的pBest之中選取。而在MO-PSO演算法中更常用的方法是使用一個外部池來存儲更多的Pareto最優解。第二步就是選擇引導者。gBest的選擇應滿足如下兩個標准:首先,它應該能為微粒提供有效的引導來獲得更好的收斂速度;第二,它還需要沿Pareo前鋒來提供平衡的搜索,以維持種群的多樣性。文獻中通常使用兩種典型的方法:(1)輪盤選擇模式,該方式按照某種標准進行隨機選擇,其目的是維持種群的多樣性;(2)數量標准:按照某種不涉及隨機選擇的過程來確定社會引導者。
Moore最早研究了PSO演算法在多目標優化中的應用,強調了個體和群體搜索二者的重要性,但是沒有採用任何維持多樣性的方法。Coello在非劣最優概念的基礎上應用了一個外部「容器」來記錄已找到的非支配向量,並用這些解來指導其它微粒的飛行。Fieldsend採用一種稱為支配樹的數據結構來對最優微粒進行排序。Parsopoulos應用了權重聚合的方法。Hu應用了動態鄰域,並在此基礎上利用擴展記憶,按詞典順序依次優化各個目標。Ray使用聚集機制來維持多樣性,並用一個多水平篩來處理約束。Lu使用了動態種群策略。Bartz-Beielstein採用歸檔技術來提高演算法性能。Li在PSO演算法中採用NSGA-II演算法中的主要機制,在局部最優微粒及其後代微粒之間確定局部最優微粒;並此基礎上又提出一種新的演算法,在適應值函數中使用最大最小策略來確定Pareto支配性。張利彪使用多個目標函數下各最優位置的均值來指導微粒飛行。Pulido使用多個子種群並採用聚類技術來求解多目標規劃問題。Mahfouf採用加權聚合方法來計算微粒的適應值,並據此確定引導微粒的搜索。Salazar-Lechuga使用適應值共享技術來引導微粒的搜索。Gong提出微粒角度的概念,並使用最小微粒角度和微粒密度來確定局部最優和全局最優微粒。基於AER模型,Zhang提出一種新的智能PSO模型,來將種群驅向Pareto最優解集。Ho提出一種新的適應值分配機制,並使用壽命(Age)變數來保存和選擇最優歷史記錄。Huang將CLPSO演算法應用到多目標規劃中。Ho提出另一種基於Pareto的與尺度無關的適應值函數,並使用一種基於正交試驗設計的智能運動機制(IMM)來確定微粒的下一步運動。Branke系統研究了多種個體最優微粒的選擇方法對MOPSO演算法性能的影響。張勇考慮儲備集更新策略在多目標PSO演算法中的關鍵作用,提出一種兩階段儲備集更新策略。
原萍提出一種分布式PSO演算法—分割域多目標PSO演算法(DRMPSO),並將其應用到基站優化問題。向量評價PSO演算法(VEPSO)是一種受向量評價遺傳演算法(VEGA)的啟發提出的一種演算法,在VEPSO演算法中,每個種群僅使用多個目標函數之一來進行評價,同時各種群之間互相交互經驗。將每個種群分配到一台網路PC上,即可直接使VEPSO演算法並行化,以加速收斂。Vlachogiannis應用並行VEPSO演算法來確定發電機對輸電系統的貢獻。熊盛武利用PSO演算法的信息傳遞機制,在PSO演算法中引入多目標演化演算法常用的歸檔技術,並採用環境選擇和配對選擇策略,使得整個群體在保持適當的選擇壓力的情況下收斂於Pareto最優解集。
由於適應值的計算非常消耗計算資源,為了減少計算量,需要減少適應值評價的次數。Reyes-Sierra採用適應值繼承和估計技術來實現該目標,並比較了十五種適應值繼承技術和四種估計技術應用於多目標PSO演算法時的效果。
保持MOPSO中的多樣性的方法主要有兩種:sigma方法和ε-支配方法。Villalobos-Arias在目標函數空間中引入條塊劃分來形成聚類,從而保持多樣性。
G. 分析標准粒子群演算法的不足及改進的方法
一個以上的目標,以優化
相對傳統的多目標優化方法在解決多目標問題,PSO具有很大的優勢。首先,PSO演算法和高效的搜索功能,有利於在這個意義上,多目標的最優解;其次,PSO代表了整個解決方案的人口集固有的並行性,同時搜索多個非劣解,所以容易搜索多個Pareto最佳的解決方案;此外,PSO通用的適合處理所有類型的目標函數和約束條件,PSO容易與傳統相結合的方法,和然後提出了有效的方法來解決一個具體的問題。 PSO本身,為了更好地解決多目標優化問題,必須解決的問題的全局最優粒子和個人選擇的最優粒子。為全局最優粒子的選擇,一方面,該演算法具有更好的收斂速度,另一方面帕累托邊界分散體的溶液中。如果在最佳的單個顆粒的選擇,需要較少的計算復雜性,並且是僅由較少數量的比較非
劣解更新。迄今為止,基於PSO的多目標優化,主要有以下
思路:
(1)向量法和加權方法。文獻[20]的固定權重法,自適應權重法和向量評估方法的第一次,PSO解決MO問題。然而,對於一個給定的優化問題,權重的方法通常是很難獲得一組合適的權重向量評價方法MO的問題是,往往無法得到滿意的解決方案。
(2)基於Pareto方法。 [21]帕累托排序機制和PSO相結合,處理的問題,多目標優化,Pareto排序方法來選擇一組的精英,和輪盤賭選擇全局最優粒子。雖然輪盤賭選擇機制,使所有的帕累托個人選擇的概率是一樣的,但實際上只有少數人的選擇的概率就越大,因此不利於保持種群多樣性;文獻[22]通過引入在PSO帕累托競爭機制,選擇全局最優粒子的顆粒知識基礎。候選個人隨機選自人口比較集進行比較,以確定非劣解,該演算法的成功取決於比較集的大小的參數設置。如果這個參數是太小了,選擇的過程,從人口的非劣效性個人可能是太小了,如果這個參數是太大,它可能會出現過早收斂。
(3)距離的方法。 [23],被分配的各個的當前的解決方案之間的距離的基礎上Pa2reto的解決方案,其適應值,以便選擇全局最優粒子。隨著距離的方法需要被初始化潛在的解決方案,如果初始電位值太大,不同的解決方案,以適應不同的值並不顯著。這將導致在選擇壓力太小或個別均勻分布,導致在PSO演算法收斂速度非常慢。
(4)附近的「。文獻[24]提出了動態鄰域的選擇策略,為優化目標的定義,目標,和其他所有的目標定義的目標附近,然後選擇全局最優粒子的動態鄰域的策略,但該方法更敏感的目標函數的優化目標選擇和附近的排序。
(5)多組法。文獻[25]的人口劃分成多個子群,以及每個子群PSO演算法,通過搜索Pareto最優解的各種子群之間的信息交流。然而,由於需要增加的粒子的數量增加的計算量。
(6)非排名的方法。 [26]使用非主導的排序選擇全局最優的粒子。整個人口,粒子的個人最好成績粒子和它的後代,有利於提供一個適當的選擇壓力,小生境技術,以增加種群多樣性。比較所有粒子的個人最好成績顆粒在整個人群遺傳給後代,但是,由於其本身的性質是不利於人口的多樣性,容易形成早熟。此外,文獻[27]最大最小策略,博弈論引入PSO解決多MO。最大最小策略,以確定粒子的適應值,可以判斷帕累托最優的解決方案,而不需要集群和小生境技術。
2約束優化
在最近幾年也取得了一些進展,PSO演算法在約束最優化。基於PSO-的約束優化工作分為兩種類型:①罰函數法;②設計特定的進化操作或約束修正系數。 [28]採用罰函數法,採用非固定多段映射罰函數將約束的優化問題,然後利用PSO解決問題的轉換後,模擬結果表明,該演算法相對進化策略和遺傳演算法的優勢,但罰函數的設計過於復雜,不利於解決;文獻[29],一個可行的解決方案,保留策略處理約束,即,一方面要更新所有的顆粒的存儲區域中到只保留可行的解決方案,在另一方面在初始化階段的所有的顆粒從一個可行的解決方案的空間值?初始的可行的解決方案空間,然而,是難以確定的很多問題,文獻[30 ]提出的多層信息共享策略粒子群與約束原則來處理,根據約束矩陣多層Pareto排序機制的微粒,從而一些微粒,以確定個人的搜索方向的其餘。
3離散優化為離散優化解決方案空間是離散點的集合,而不是連續PSO解決離散優化問題,必須予以糾??正的速度和位置更新公式,或變形。基於PSO的離散優化可分為以下三類:
速度(1)的位置變化的概率。 [31]首先提出了離散二進制PSO。二進制粒子的位置編碼器,Sigmoid函數,速度約束在[0,1],代表粒子的概率立場;法[32] [31]在文獻
提高的地址更換安排。安排更換顆粒,速度是指根據兩個粒子的相似性,以確定粒子的位置變化也引入突變操作,以防止陷入局部極小的最優粒子的概率。
(2)重新定義的PSO的操作。 [33]通過重新定義粒子的位置,速度,和他們的加法和減法乘法運算,提出了一種新的離散粒子群,並為解決旅行商問題。雖然該演算法是有效的,但它提供了一種新的思維方式求解組合優化問題。
(3)連續PSO離散的情況下。 [34]採用連續PSO,解決分布式計算機任務的分配問題。於實數被轉換為一個正整數,和符號的實數部分和小數部分的
分除去。結果表明,在溶液中的質量和速度的方法的演算法是優於遺傳演算法。
4動態優化
在許多實際工程問題,優化環境是不確定的,或動態。因此,優化演算法必須有能力與環境的動態變化做出相應的調整,以最佳的解決方案,該演算法具有一定的魯棒性。 [35]首次提出了PSO跟蹤動態系統[36]提出了自適應PSO自動跟蹤動態系統的變化,種群粒子檢測方法和粒子重新初始化PSO系統變化的跟蹤能力增強;文獻[37]迅速變化的動態環境中,在粒子速度更新公式的變化條目的增加,消除了需要在環境中的變化來檢測,可以跟蹤環境處理。雖然該研究少得多,但不容質疑的,是一個重要的研究內容。
粒子群演算法的MATLAB程序
初始化粒子群;
對於每個粒子
計算他們的身體健康;
如果(健身優於粒子的歷史最好值)
歷史最好的個人裨錫更新;
如果選擇當前粒子群粒子;(當前的最優粒子比歷史最好粒子組)
與目前最好的粒子更新PG組;對於每個粒子
更新粒子類型①速度;
更新的位置粒子類型②;
完
雖然還沒有達到最大迭代次數,或不符合的最小誤差。
H. pso的演算法結構
對微粒群演算法結構的改進方案有很多種,對其可分類為:採用多個子種群;改進微粒學習對象的選取策略;修改微粒更新迭代公式;修改速度更新策略;修改速度限制方法、位置限制方法和動態確定搜索空間;與其他搜索技術相結合;以及針對多模問題所作的改進。
第一類方案是採用多個子種群。柯晶考慮優化問題對收斂速度和尋優精度的雙重要求並借鑒多群體進化演算法的思想,將尋優微粒分成兩組,一組微粒採用壓縮因子的局部模式PSO演算法,另一組微粒採用慣性權重的全局模式PSO演算法,兩組微粒之間採用環形拓撲結構。對於高維優化問題,PSO演算法需要的微粒個數很多,導致計算復雜度常常很高,並且很難得到好的解。因此,出現了一種協作微粒群演算法(Cooperative ParticleSwarm Optimizer, CPSO-H),將輸入向量拆分成多個子向量,並對每個子向量使用一個微粒群來進行優化。雖然CPSO-H演算法使用一維群體來分別搜索每一維,但是這些搜索結果被一個全局群體集成起來之後,在多模問題上的性能與原始PSO演算法相比有很大的改進。Chow使用多個互相交互的子群,並引入相鄰群參考速度。馮奇峰提出將搜索區域分區,使用多個子群並通過微粒間的距離來保持多樣性。陳國初將微粒分成飛行方向不同的兩個分群,其中一分群朝最優微粒飛行,另一分群微粒朝相反方向飛行;飛行時,每一微粒不僅受到微粒本身飛行經驗和本分群最優微粒的影響,還受到全群最優微粒的影響。Niu在PSO演算法中引入主—從子群模式,提出一種多種群協作PSO演算法。Seo提出一種多組PSO演算法(Multigrouped PSO),使用N組微粒來同時搜索多模問題的N個峰。Selleri使用多個獨立的子群,在微粒速度的更新方程中添加了一些新項,分別使得微粒向子群歷史最優位置運動,或者遠離其他子群的重心。王俊年借鑒遞階編碼的思想,構造出一種多種群協同進化PSO演算法。高鷹借鑒生態學中環境和種群競爭的關系,提出一種基於種群密度的多種群PSO演算法。
第二類方案是改進微粒學習對象的選取策略。Al-kazemi提出多階段PSO演算法,將微粒按不同階段的臨時搜索目標分組,這些臨時目標允許微粒向著或背著它自己或全局最好位置移動。Ting對每個微粒的pBest進行操作,每一維從其他隨機確定的維度學習,之後如果新的pBest更好則替換原pBest;該文還比較了多種不同學習方式對應的PSO演算法的性能。Liang提出一種新穎的學習策略CLPSO,利用所有其他微粒的歷史最優信息來更新微粒的速度;每個微粒可以向不同的微粒學習,並且微粒的每一維可以向不同的微粒學習。該策略能夠保持群體的多樣性,防止早熟收斂,可以提高PSO演算法在多模問題上的性能;通過實驗將該演算法與其它幾種PSO演算法的變種進行比較,實驗結果表明該演算法在解決多模復雜問題時效果很好。Zhao在PSO演算法中使用適應值最好的n個值來代替速度更新公式中的gBest。Abdelbar提出一種模糊度量,從而使得每個鄰域中有多個適應值最好的微粒可以影響其它微粒。Wang也採用多個適應值最好的微粒信息來更新微粒速度,並提出一種模糊規則來自適應地確定參數。崔志華提出一種動態調整的改進PSO演算法,在運行過程中動態調整極限位置,使得每個微粒的極限位置在其所經歷的最好位置與整體最好位置所形成的動態圓中分布。與原始PSO演算法相反,有一類方法是遠離最差位置而非飛向最優位置。Yang提出在演算法中記錄最差位置而非最優位置,所有微粒都遠離這些最差位置。與此類似,Leontitsis在微粒群演算法中引入排斥子的概念,在使用個體最優位置和群體最優位置信息的同時,在演算法中記錄當前的個體最差位置和群體最差位置,並利用它們將微粒排斥到最優位置,從而讓微粒群更快地到達最優位置。孟建良提出一種改進的PSO演算法,在進化的初期,微粒以較大的概率向種群中其他微粒的個體最優學習;在進化後期,微粒以較大的概率向當前全局最優個體學習。Yang在PSO演算法中引入輪盤選擇技術來確定gBest,使得所有個體在進化早期都有機會引領搜索方向,從而避免早熟。
第三類方案是修改微粒更新公式。Hendtlass在速度更新方程中給每個微粒添加了記憶能力。He在速度更新方程中引入被動聚集機制。曾建潮通過對PSO演算法的速度進化迭代方程進行修正,提出一種保證全局收斂的隨機PSO演算法。Zeng在PSO演算法中引入加速度項,使得PSO演算法從一個二階隨機系統變為一個三階隨機系統,並使用PID控制器來控制演算法的演化。為了改進PSO演算法的全局搜索能力,Ho提出一種新的微粒速度和位置更新公式,並引入壽命(Age)變數。
第四類方案是修改速度更新策略。Liu認為過於頻繁的速度更新會弱化微粒的局部開采能力並減慢收斂,因此提出一種鬆弛速度更新(RVU)策略,僅當微粒使用原速度不能進一步提高適應值時才更新速度,並通過試驗證明該策略可以大大減小計算量並加速收斂。羅建宏對同步模式和非同步模式的PSO演算法進行了對比研究,試驗結果表明非同步模式收斂速度顯著提高,同時尋優效果更好。Yang在微粒的更新規則中引入感情心理模型。Liu採用一個最小速度閾值來控制微粒的速度,並使用一個模糊邏輯控制器來自適應地調節該最小速度閾值。張利彪提出了對PSO演算法增加更新概率,對一定比例的微粒並不按照原更新公式更新,而是再次隨機初始化。Dioan利用遺傳演算法(GA)來演化PSO演算法的結構,即微粒群中各微粒更新的順序和頻率。
第五類方案是修改速度限制方法、位置限制方法和動態確定搜索空間。Stacey提出一種重新隨機化速度的速度限制和一種重新隨機化位置的位置限制。Liu在[76]的基礎上,在PSO演算法中引入動量因子,來將微粒位置限制在可行范圍內。陳炳瑞提出一種根據微粒群的最佳適應值動態壓縮微粒群的搜索空間與微粒群飛行速度范圍的改進PSO演算法。
第六類方案是通過將PSO演算法與一些其他的搜索技術進行結合來提高PSO演算法的性能,主要目的有二,其一是提高種群多樣性,避免早熟;其二是提高演算法局部搜索能力。這些混合演算法包括將各種遺傳運算元如選擇、交叉、變異引入PSO演算法,來增加種群的多樣性並提高逃離局部最小的能力。Krink通過解決微粒間的沖突和聚集來增強種群多樣性,提出一種空間擴展PSO演算法(Spatial ExtensionPSO,SEPSO);但是SEPSO演算法的參數比較難以調節,為此Monson提出一種自適應調節參數的方法。用以提高種群多樣性的其他方法或模型還包括「吸引—排斥」、捕食—被捕食模型、耗散模型、自組織模型、生命周期模型(LifeCycle model)、貝葉斯優化模型、避免沖突機制、擁擠迴避(Crowd Avoidance)、層次化公平競爭(HFC)、外部記憶、梯度下降技術、線性搜索、單純形法運算元、爬山法、勞動分工、主成分分析技術、卡爾曼濾波、遺傳演算法、隨機搜索演算法、模擬退火、禁忌搜索、蟻群演算法(ACO)、人工免疫演算法、混沌演算法、微分演化、遺傳規劃等。還有人將PSO演算法在量子空間進行了擴展。Zhao將多主體系統(MAS)與PSO演算法集成起來,提出MAPSO演算法。Medasani借鑒概率C均值和概率論中的思想對PSO演算法進行擴展,提出一種概率PSO演算法,讓演算法分勘探和開發兩個階段運行。
第七類方案專門針對多模問題,希望能夠找到多個較優解。為了能使PSO演算法一次獲得待優化問題的多個較優解,Parsopoulos使用了偏轉(Deflection)、拉伸(Stretching)和排斥(Repulsion)等技術,通過防止微粒運動到之前已經發現的最小區域,來找到盡可能多的最小點。但是這種方法會在檢測到的局部最優點兩端產生一些新的局部最優點,可能會導致優化演算法陷入這些局部最小點。為此,Jin提出一種新的函數變換形式,可以避免該缺點。基於類似思想,熊勇提出一種旋轉曲面變換方法。
保持種群多樣性最簡單的方法,是在多樣性過小的時候,重置某些微粒或整個微粒群。Lvbjerg在PSO演算法中採用自組織臨界性作為一種度量,來描述微粒群中微粒相互之間的接近程度,來確定是否需要重新初始化微粒的位置。Clerc提出了一種「Re-Hope」方法,當搜索空間變得相當小但是仍未找到解時(No-Hope),重置微粒群。Fu提出一種帶C-Pg變異的PSO演算法,微粒按照一定概率飛向擾動點而非Pg。赫然提出了一種自適應逃逸微粒群演算法,限制微粒在搜索空間內的飛行速度並給出速度的自適應策略。
另一種變種是小生境PSO演算法,同時使用多個子種群來定位和跟蹤多個最優解。Brits還研究了一種通過調整適應值計算方式的方法來同時找到多個最優解。Li在PSO演算法中引入適應值共享技術來求解多模問題。Zhang在PSO演算法中採用順序生境(SequentialNiching)技術。在小生境PSO演算法的基礎上,還可以使用向量點積運算來確定各個小生境中的候選解及其邊界,並使該過程並行化,以獲得更好的結果。但是,各種小生境PSO演算法存在一個共同的問題,即需要確定一個小生境半徑,且演算法性能對該參數很敏感。為解決該問題,Bird提出一種自適應確定niching參數的方法。
Hendtlass在PSO演算法中引入短程力的概念,並基於此提出一種WoSP演算法,可以同時確定多個最優點。劉宇提出一種多模態PSO演算法,用聚類演算法對微粒進行聚類,動態地將種群劃分成幾個類,並且使用微粒所屬類的最優微粒而非整個種群的最好微粒來更新微粒的速度,從而可以同時得到多個近似最優解。Li在PSO演算法中引入物種的概念,但是由於其使用的物種間距是固定的,該方法只適用於均勻分布的多模問題;為此,Yuan對該演算法進行擴展,採用多尺度搜索方法對物種間距加以自適應的調整。
此外,也有研究者將PSO演算法的思想引入其他演算法中,如將PSO演算法中微粒的運動規則嵌入到進化規劃中,用PSO演算法中的運動規則來替代演化演算法中交叉運算元的功能。
I. 粒子群優化演算法的PSO
演化計算可以用來研究神經網路的三個方面:網路連接權重,網路結構(網路拓撲結構,傳遞函數),網路學習演算法。
不過大多數這方面的工作都集中在網路連接權重,和網路拓撲結構上。在GA中,網路權重和/或拓撲結構一般編碼為染色體(Chromosome),適應函數(fitness function)的選擇一般根據研究目的確定。例如在分類問題中,錯誤分類的比率可以用來作為適應值。 這里用一個簡單的例子說明PSO訓練神經網路的過程。這個例子使用分類問題的基準函數 (Benchmark function)IRIS數據集。(Iris 是一種鳶尾屬植物) 在數據記錄中,每組數據包含Iris花的四種屬性:萼片長度,萼片寬度,花瓣長度,和花瓣寬度,三種不同的花各有50組數據. 這樣總共有150組數據或模式。
我們用3層的神經網路來做分類。現在有四個輸入和三個輸出。所以神經網路的輸入層有4個節點,輸出層有3個節點我們也可以動態調節隱含層節點的數目,不過這里我們假定隱含層有6個節點。我們也可以訓練神經網路中其他的參數。不過這里我們只是來確定網路權重。粒子就表示神經網路的一組權重,應該是4*6+6*3=42個參數。權重的范圍設定為[-100,100] (這只是一個例子,在實際情況中可能需要試驗調整).在完成編碼以後,我們需要確定適應函數。對於分類問題,我們把所有的數據送入神經網路,網路的權重有粒子的參數決定。然後記錄所有的錯誤分類的數目作為那個粒子的適應值。現在我們就利用PSO來訓練神經網路來獲得盡可能低的錯誤分類數目。PSO本身並沒有很多的參數需要調整。所以在實驗中只需要調整隱含層的節點數目和權重的范圍以取得較好的分類效果。
J. pso的優化求解
PSO演算法被廣泛應用於各種優化問題,並且已經成為優化領域中的一個有效演算法。除了普通函數優化之外,還包括如下方面。
混合整數非線性規劃
很多求解整數規劃的演算法是在採用實數域的演算法進行優化後,再將結果取整作為整數規劃的近似解。這種做法常常導致不滿足約束或遠離最優解。譚瑛提出一種在整數空間中直接進行進化計算的PSO演算法。劉釗針對混合整數非線性規劃中可行解產生代價較高的問題,建立了保證都是合法解的備用微粒庫,並提出微粒遷移策略,幫助微粒跳出局部最優。
雜訊和動態環境
動態系統的狀態會經常改變,甚至可能會連續變化。許多實際系統都會涉及到動態環境。例如,由於顧客的優先順序、意外的設備維護等導致的變化,調度系統中大多數計算時間都被用來進行重新調度。在實際應用中,這些系統狀態的變化就需要經常進行重新優化。
最初使用微粒群演算法跟蹤動態系統的工作由Carlisle提出,通過周期性地重置所有微粒的記憶來跟蹤動態系統。Eberhart也採用類似想法;之後Hu提出一種自適應PSO演算法,能夠自動跟蹤動態系統中的不同變化,並在拋物線benchmark函數上對不同的環境檢測和響應技術進行了實驗,其中使用的檢測方法是監控種群中最優微粒的行為。後來Carlisle使用搜索空間中的一個隨機點來確定環境是否發生變化,但是這需要集中控制,與PSO演算法的分布式處理模型不符。為此Cui提出TDPSO演算法,讓最優歷史位置的適應值隨著時間減小,從而不再需要集中控制。Blackwell在微粒的更新公式中添加了一項懲罰項,來保持微粒處於一個擴展的群中,以應對快速變化的動態環境,該方法中不需要檢測最優點是否發生變化。
Parsopoulos等的試驗表明,基本PSO演算法就可以有效而穩定地在雜訊環境中工作,且在很多情況下,雜訊的存在還可以幫助PSO演算法避免陷入局部最優。Parsopoulos還通過試驗研究了UPSO演算法在動態環境中的性能。Pugh提出一種抗雜訊的PSO演算法。Pan將假設檢驗和最優計算預算分配(OCBA)技術引入微粒群演算法,提出PSOOHT演算法,來解決雜訊環境下的函數優化問題。
上述工作的研究對象都是簡單的動態系統,所採用的實驗函數是簡單的單模函數,並且所涉及的變化都是簡單環境下的均勻變化(即固定步長)。而事實上,實際的動態系統經常是非線性的,並在復雜的多模搜索空間中非均勻變化。Li採用四個PSO模型,對一系列不同的動態環境進行了對比研究。
上述方法均是針對僅跟蹤單個最優點的情況,