導航:首頁 > 源碼編譯 > kgroup逆轉演算法

kgroup逆轉演算法

發布時間:2023-07-22 13:37:29

1. K均值演算法介紹

從沒有標記過的數據中學習稱之為非監督學習。
在非監督學習中,通過演算法來定義一些數據的結構,將數據分別聚合到這些子集中,這種演算法稱之為聚類演算法。

K均值 (K-means) 演算法是最常用的一種聚類演算法。


假設有槐閉運如上的數據集,可以看到只有輸入 ,沒有輸出 。

下面說明一下K均值演算法的過程

K均值演算法的代價函數為:

優化目標就是使用上面的代價函數最小化所有參數。

上述步驟中
第3步集群分配,是通過找到離樣本最近的聚類中心點來最小化代價函數;
第4步移動質心,是通過改變樣本和聚類中心點的距離來最小代價函數。
在K均值演算法中,代價函數是一直下降的,不可能出現上升的情況。

聚類中心的個數 一般都是小於樣本數量 的,因此可以隨機取 個樣本來作為聚類中心。

步驟

這樣做的優點是方便快捷,缺點是不一定能夠找到最佳的聚類中心,容易陷入局部最優。鉛梁
這種陷入局部最優的情況在聚態行類中心過少時一般會出現,一般在 的情況下,解決辦法是多次執行該步驟,比較代價函數的值,取最小值。

聚類中心數量的選擇沒有固定的方法,跟主觀上的判斷有很大關系,也跟業務,以及一些客觀條件,以及使用K均值演算法的目標有關。

2. kmeans演算法原理

kmeans演算法原理如下:

K-means演算法是一種典型的基於劃分的聚類演算法該演算法具有運算速度快,執行過程簡單的優點,在很多大數據處理領域得到了廣泛的應用。

利用相似性度量方法來衡量數據集中所有數據之間的關系,將關系比較密切的數據劃分到一個集合中。K-means演算法首先需要選擇K個初始化聚類中,計算每個數據對象到K個初始化聚類中心的距離。

2、缺點:需要人工預先確定初始K值,該值與實際的類另數可能不吻合。tK均值只能收斂到局部最優。因為求解這個代價函數是個NP問題,採用的是貪心策略,所以只能通過多次迭代收斂到局部最優,而不是全局最優。

K<均值的效果受初始值和離群點的影響大。因為k均值本質上是基於距離度量來劃分的,均值和差大的維度將對數據的聚類結帆山塌果產生決定性的影響,因此需要進行歸-化處理:此外,離群點或雜訊對均值會產生影響,導致中心偏移,因此需要進行預處理。

3. 什麼是k均值聚類演算法

適用條件:系統聚類法適於二維有序樣品聚類的樣品個數比較均勻。K均值聚類法適用於快速高效,特別是大宴滾褲量數據時使用。

兩者區別如下:

一、指代不同

1、K均值聚類法:是一種迭代求解的聚類分析演算法。

2、系統聚類法:又叫分層聚晌簡類法,聚類分析的一種方法。

二、步驟不同

1、K均值聚類法:步驟是隨機選取K個對象作為初始的聚類中心,然後計算每個對象與各個種子聚類中心之間的距離,把每個對象分配給距離它最近的聚類中心。

2、系統聚類法:開始時把每個樣品作為一類,然後把最靠近的樣品(即距離最小的群品)首先聚為小類,再將已聚合的小類按其類間距離再合並,不斷繼續下去,最後把一切子類都聚合到一個大類。


三、目的不同

1、K均值聚類法:終止條件可以是沒有(或最小數目)對象被重新分配給不同的聚類,沒有(或最小數目)聚類中心再發生變化,誤差平方和局部最小。

2、系統聚類法:是以距離為相似統計量時,確定新類與其他各類之間距離的方法,如最短距離法、最長距離法備滾、中間距離法、重心法、群平均法、離差平方和法、歐氏距離等。


4. python幾種經典排序方法的實現

class SortMethod:
'''
插入排序的基本操作就是將一個數據插入到已經排好序的有序數據中,從而得到一個新的、個數加一的有序數據,演算法適用於少量數據的排序,時間復雜度為O(n^2)。是穩定的排序方法。
插入演算法把要排序的數組分成兩部分:
第一部分包含了這個數組的所有元素,但將最後一個元素除外(讓數組多一個空間才有插入的位置)
第二部分就只包含這一個元素(即待插入元素)。
在第一部分排序完成後,再將這個最後元素插入到已排好序的第一部分中。
'''
def insert_sort(lists):
# 插入排序
count = len(lists)
for i in range(1, count):
key = lists[i]
j = i - 1
while j >= 0:
if lists[j] > key:
lists[j + 1] = lists[j]
lists[j] = key
j -= 1
return lists
'''
希爾排序 (Shell Sort) 是插入排序的一種。也稱縮小增量排序,是直接插入排序演算法的一種更高效的改進版本。希爾排序是非穩定排序演算法。該方法因 DL.Shell 於 1959 年提出而得名。
希爾排序是把記錄按下標的一定增量分組,對每組使用直接插入排序演算法排序;隨著增量逐漸減少,每組包含的關鍵詞越來越多,當增量減至 1 時,整個文件恰被分成一組,演算法便終止。
'''
def shell_sort(lists):
# 希爾排序
count = len(lists)
step = 2
group = count / step
while group > 0:
for i in range(0, group):
j = i + group
while j < count:
k = j - group
key = lists[j]
while k >= 0:
if lists[k] > key:
lists[k + group] = lists[k]
lists[k] = key
k -= group
j += group
group /= step
return lists
'''
冒泡排序重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。
'''
def bubble_sort(lists):
# 冒泡排序
count = len(lists)
for i in range(0, count):
for j in range(i + 1, count):
if lists[i] > lists[j]:
temp = lists[j]
lists[j] = lists[i]
lists[i] = temp
return lists
'''
快速排序
通過一趟排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數據變成有序序列
'''
def quick_sort(lists, left, right):
# 快速排序
if left >= right:
return lists
key = lists[left]
low = left
high = right
while left < right:
while left < right and lists[right] >= key:
right -= 1
lists[left] = lists[right]
while left < right and lists[left] <= key:
left += 1
lists[right] = lists[left]
lists[right] = key
quick_sort(lists, low, left - 1)
quick_sort(lists, left + 1, high)
return lists
'''
直接選擇排序
第 1 趟,在待排序記錄 r[1] ~ r[n] 中選出最小的記錄,將它與 r[1] 交換;
第 2 趟,在待排序記錄 r[2] ~ r[n] 中選出最小的記錄,將它與 r[2] 交換;
以此類推,第 i 趟在待排序記錄 r[i] ~ r[n] 中選出最小的記錄,將它與 r[i] 交換,使有序序列不斷增長直到全部排序完畢。
'''
def select_sort(lists):
# 選擇排序
count = len(lists)
for i in range(0, count):
min = i
for j in range(i + 1, count):
if lists[min] > lists[j]:
min = j
temp = lists[min]
lists[min] = lists[i]
lists[i] = temp
return lists
'''
堆排序 (Heapsort) 是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法,它是選擇排序的一種。
可以利用數組的特點快速定位指定索引的元素。堆分為大根堆和小根堆,是完全二叉樹。大根堆的要求是每個節點的值都不大於其父節點的值,即 A[PARENT[i]] >= A[i]。
在數組的非降序排序中,需要使用的就是大根堆,因為根據大根堆的要求可知,最大的值一定在堆頂。
'''
# 調整堆
def adjust_heap(lists, i, size):
lchild = 2 * i + 1
rchild = 2 * i + 2
max = i
if i < size / 2:
if lchild < size and lists[lchild] > lists[max]:
max = lchild
if rchild < size and lists[rchild] > lists[max]:
max = rchild
if max != i:
lists[max], lists[i] = lists[i], lists[max]
adjust_heap(lists, max, size)
# 創建堆
def build_heap(lists, size):
for i in range(0, (size/2))[::-1]:
adjust_heap(lists, i, size)
# 堆排序
def heap_sort(lists):
size = len(lists)
build_heap(lists, size)
for i in range(0, size)[::-1]:
lists[0], lists[i] = lists[i], lists[0]
adjust_heap(lists, 0, i)
'''
歸並排序是建立在歸並操作上的一種有效的排序演算法,該演算法是採用分治法 (Divide and Conquer) 的一個非常典型的應用。將已有序的子序列合並,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合並成一個有序表,稱為二路歸並。
歸並過程為:
比較 a[i] 和 a[j] 的大小,若 a[i]≤a[j],則將第一個有序表中的元素 a[i] 復制到 r[k] 中,並令 i 和 k 分別加上 1;
否則將第二個有序表中的元素 a[j] 復制到 r[k] 中,並令 j 和 k 分別加上 1,如此循環下去,直到其中一個有序表取完,然後再將另一個有序表中剩餘的元素復制到 r 中從下標 k 到下標 t 的單元。歸並排序的演算法我們通常用遞歸實現,先把待排序區間 [s,t] 以中點二分,接著把左邊子區間排序,再把右邊子區間排序,最後把左區間和右區間用一次歸並操作合並成有序的區間 [s,t]。
'''
def merge(left, right):
i, j = 0, 0
result = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result += left[i:]
result += right[j:]
return result
def merge_sort(lists):
# 歸並排序
if len(lists) <= 1:
return lists
num = len(lists) / 2
left = merge_sort(lists[:num])
right = merge_sort(lists[num:])
return merge(left, right)
'''
基數排序 (radix sort) 屬於「分配式排序」 (distribution sort),又稱「桶子法」 (bucket sort) 或 bin sort,顧名思義,它是透過鍵值的部份資訊,將要排序的元素分配至某些「桶」中,藉以達到排序的作用,基數排序法是屬於穩定性的排序。
其時間復雜度為 O (nlog(r)m),其中 r 為所採取的基數,而 m 為堆數,在某些時候,基數排序法的效率高於其它的穩定性排序法。
'''
import math
def radix_sort(lists, radix=10):
k = int(math.ceil(math.log(max(lists), radix)))
bucket = [[] for i in range(radix)]
for i in range(1, k+1):
for j in lists:
bucket[j/(radix**(i-1)) % (radix**i)].append(j)
del lists[:]
for z in bucket:
lists += z
del z[:]
return lists
---------------------
作者:CRazyDOgen
來源:CSDN
原文:https://blog.csdn.net/jipang6225/article/details/79975312
版權聲明:本文為博主原創文章,轉載請附上博文鏈接!

5. 建議收藏!10 種 Python 聚類演算法完整操作示例

聚類或聚類分析是無監督學習問題。它通常被用作數據分析技術,用於發現數據中的有趣模式,例如基於其行為的客戶群。有許多聚類演算法可供選擇,對於所有情況,沒有單一的最佳聚類演算法。相反,最好探索一系列聚類演算法以及每種演算法的不同配置。在本教程中,你將發現如何在 python 中安裝和使用頂級聚類演算法。完成本教程後,你將知道:

聚類分析,即聚類,是一項無監督的機器學習任務。它包括自動發現數據中的自然分組。與監督學習(類似預測建模)不同,聚類演算法只解釋輸入數據,並在特徵空間中找到自然組或群集。

群集通常是特徵空間中的密度區域,其中來自域的示例(觀測或數據行)比其他群集更接近群集。群集可以具有作為樣本或點特徵空間的中心(質心),並且可以具有邊界或范圍。

聚類可以作為數據分析活動提供幫助,以便了解更多關於問題域的信息,即所謂的模式發現或知識發現。例如:

聚類還可用作特徵工程的類型,其中現有的和新的示例可被映射並標記為屬於數據中所標識的群集之一。雖然確實存在許多特定於群集的定量措施,但是對所識別的群集的評估是主觀的,並且可能需要領域專家。通常,聚類演算法在人工合成數據集上與預先定義的群集進行學術比較,預計演算法會發現這些群集。

有許多類型的聚類演算法。許多演算法在特徵空間中的示例之間使用相似度或距離度量,以發現密集的觀測區域。因此,在使用聚類演算法之前,擴展數據通常是良好的實踐。

一些聚類演算法要求您指定或猜測數據中要發現的群集的數量,而另一些演算法要求指定觀測之間的最小距離,其中示例可以被視為「關閉」或「連接」。因此,聚類分析是一個迭代過程,在該過程中,對所識別的群集的主觀評估被反饋回演算法配置的改變中,直到達到期望的或適當的結果。scikit-learn 庫提供了一套不同的聚類演算法供選擇。下面列出了10種比較流行的演算法:

每個演算法都提供了一種不同的方法來應對數據中發現自然組的挑戰。沒有最好的聚類演算法,也沒有簡單的方法來找到最好的演算法為您的數據沒有使用控制實驗。在本教程中,我們將回顧如何使用來自 scikit-learn 庫的這10個流行的聚類演算法中的每一個。這些示例將為您復制粘貼示例並在自己的數據上測試方法提供基礎。我們不會深入研究演算法如何工作的理論,也不會直接比較它們。讓我們深入研究一下。

在本節中,我們將回顧如何在 scikit-learn 中使用10個流行的聚類演算法。這包括一個擬合模型的例子和可視化結果的例子。這些示例用於將粘貼復制到您自己的項目中,並將方法應用於您自己的數據。

1.庫安裝

首先,讓我們安裝庫。不要跳過此步驟,因為你需要確保安裝了最新版本。你可以使用 pip Python 安裝程序安裝 scikit-learn 存儲庫,如下所示:

接下來,讓我們確認已經安裝了庫,並且您正在使用一個現代版本。運行以下腳本以輸出庫版本號。

運行該示例時,您應該看到以下版本號或更高版本。

2.聚類數據集

我們將使用 make _ classification ()函數創建一個測試二分類數據集。數據集將有1000個示例,每個類有兩個輸入要素和一個群集。這些群集在兩個維度上是可見的,因此我們可以用散點圖繪制數據,並通過指定的群集對圖中的點進行顏色繪制。這將有助於了解,至少在測試問題上,群集的識別能力如何。該測試問題中的群集基於多變數高斯,並非所有聚類演算法都能有效地識別這些類型的群集。因此,本教程中的結果不應用作比較一般方法的基礎。下面列出了創建和匯總合成聚類數據集的示例。

運行該示例將創建合成的聚類數據集,然後創建輸入數據的散點圖,其中點由類標簽(理想化的群集)著色。我們可以清楚地看到兩個不同的數據組在兩個維度,並希望一個自動的聚類演算法可以檢測這些分組。

已知聚類著色點的合成聚類數據集的散點圖接下來,我們可以開始查看應用於此數據集的聚類演算法的示例。我已經做了一些最小的嘗試來調整每個方法到數據集。3.親和力傳播親和力傳播包括找到一組最能概括數據的範例。

它是通過 AffinityPropagation 類實現的,要調整的主要配置是將「 阻尼 」設置為0.5到1,甚至可能是「首選項」。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我無法取得良好的結果。

數據集的散點圖,具有使用親和力傳播識別的聚類

4.聚合聚類

聚合聚類涉及合並示例,直到達到所需的群集數量為止。它是層次聚類方法的更廣泛類的一部分,通過 AgglomerationClustering 類實現的,主要配置是「 n _ clusters 」集,這是對數據中的群集數量的估計,例如2。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個合理的分組。

使用聚集聚類識別出具有聚類的數據集的散點圖

5.BIRCHBIRCH

聚類( BIRCH 是平衡迭代減少的縮寫,聚類使用層次結構)包括構造一個樹狀結構,從中提取聚類質心。

它是通過 Birch 類實現的,主要配置是「 threshold 」和「 n _ clusters 」超參數,後者提供了群集數量的估計。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個很好的分組。

使用BIRCH聚類確定具有聚類的數據集的散點圖

6.DBSCANDBSCAN

聚類(其中 DBSCAN 是基於密度的空間聚類的雜訊應用程序)涉及在域中尋找高密度區域,並將其周圍的特徵空間區域擴展為群集。

它是通過 DBSCAN 類實現的,主要配置是「 eps 」和「 min _ samples 」超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,盡管需要更多的調整,但是找到了合理的分組。

使用DBSCAN集群識別出具有集群的數據集的散點圖

7.K均值

K-均值聚類可以是最常見的聚類演算法,並涉及向群集分配示例,以盡量減少每個群集內的方差。

它是通過 K-均值類實現的,要優化的主要配置是「 n _ clusters 」超參數設置為數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個合理的分組,盡管每個維度中的不等等方差使得該方法不太適合該數據集。

使用K均值聚類識別出具有聚類的數據集的散點圖

8.Mini-Batch

K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的樣本而不是整個數據集對群集質心進行更新,這可以使大數據集的更新速度更快,並且可能對統計雜訊更健壯。

它是通過 MiniBatchKMeans 類實現的,要優化的主配置是「 n _ clusters 」超參數,設置為數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,會找到與標准 K-均值演算法相當的結果。

帶有最小批次K均值聚類的聚類數據集的散點圖

9.均值漂移聚類

均值漂移聚類涉及到根據特徵空間中的實例密度來尋找和調整質心。

它是通過 MeanShift 類實現的,主要配置是「帶寬」超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以在數據中找到一組合理的群集。

具有均值漂移聚類的聚類數據集散點圖

10.OPTICSOPTICS

聚類( OPTICS 短於訂購點數以標識聚類結構)是上述 DBSCAN 的修改版本。

它是通過 OPTICS 類實現的,主要配置是「 eps 」和「 min _ samples 」超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我無法在此數據集上獲得合理的結果。

使用OPTICS聚類確定具有聚類的數據集的散點圖

11.光譜聚類

光譜聚類是一類通用的聚類方法,取自線性線性代數。

它是通過 Spectral 聚類類實現的,而主要的 Spectral 聚類是一個由聚類方法組成的通用類,取自線性線性代數。要優化的是「 n _ clusters 」超參數,用於指定數據中的估計群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,找到了合理的集群。

使用光譜聚類聚類識別出具有聚類的數據集的散點圖

12.高斯混合模型

高斯混合模型總結了一個多變數概率密度函數,顧名思義就是混合了高斯概率分布。它是通過 Gaussian Mixture 類實現的,要優化的主要配置是「 n _ clusters 」超參數,用於指定數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我們可以看到群集被完美地識別。這並不奇怪,因為數據集是作為 Gaussian 的混合生成的。

使用高斯混合聚類識別出具有聚類的數據集的散點圖

在本文中,你發現了如何在 python 中安裝和使用頂級聚類演算法。具體來說,你學到了:

閱讀全文

與kgroup逆轉演算法相關的資料

熱點內容
dvd光碟存儲漢子演算法 瀏覽:757
蘋果郵件無法連接伺服器地址 瀏覽:962
phpffmpeg轉碼 瀏覽:671
長沙好玩的解壓項目 瀏覽:142
專屬學情分析報告是什麼app 瀏覽:564
php工程部署 瀏覽:833
android全屏透明 瀏覽:732
阿里雲伺服器已開通怎麼辦 瀏覽:803
光遇為什麼登錄時伺服器已滿 瀏覽:301
PDF分析 瀏覽:484
h3c光纖全工半全工設置命令 瀏覽:141
公司法pdf下載 瀏覽:381
linuxmarkdown 瀏覽:350
華為手機怎麼多選文件夾 瀏覽:683
如何取消命令方塊指令 瀏覽:349
風翼app為什麼進不去了 瀏覽:778
im4java壓縮圖片 瀏覽:362
數據查詢網站源碼 瀏覽:150
伊克塞爾文檔怎麼進行加密 瀏覽:890
app轉賬是什麼 瀏覽:163