導航:首頁 > 源碼編譯 > 演算法dfs例題

演算法dfs例題

發布時間:2023-07-23 19:47:19

Ⅰ 圖遍歷演算法之DFS/BFS

在計算機科學, 圖遍歷(Tree Traversal,也稱圖搜索)是一系列圖搜索的演算法, 是單次訪問樹結構類型數據(tree data structure)中每個節點以便檢查或更新的一系列機制。圖遍歷演算法可以按照節點訪問順序進行分類,根據訪問目的或使用場景的不同,演算法大致可分為28種:

圖遍歷即以特定方式訪問圖中所有節點,給定節點下有多種可能的搜索路徑。假定以順序方式進行(非並行),還未訪問的節點就需通過堆棧(LIFO)或隊列(FIFO)規則來確定訪問先後。由於樹結構是一種遞歸的數據結構,在清晰的定義下,未訪問節點可存儲在調用堆棧中。本文介紹了圖遍歷領域最流行的廣度優先搜索演算法BFS和深度優先搜索演算法DFS,對其原理、應用及實現進行了闡述。通常意義上而言,深度優先搜索(DFS)通過遞歸調用堆棧比較容易實現,廣義優先搜索通過隊列實現。

深度優先搜索(DFS)是用於遍歷或搜索圖數據結構的演算法,該演算法從根節點開始(圖搜索時可選擇任意節點作為根節點)沿著每個分支進行搜索,分支搜索結束後在進行回溯。在進入下一節點之前,樹的搜索盡可能的加深。
DFS的搜索演算法如下(以二叉樹為例):假定根節點(圖的任意節點可作為根節點)標記為 ,
(L) : 遞歸遍歷左子樹,並在節點 結束。
(R): 遞歸遍歷右子樹,並在節點 結束。
(N): 訪問節點 。
這些步驟可以以任意次序排列。如果(L)在(R)之前,則該過程稱為從左到右的遍歷;反之,則稱為從右到左的遍歷。根據訪問次序的不同,深度優先搜索可分為 pre-order、in-order、out-order以及post-order遍歷方式。

(a)檢查當前節點是否為空;
(b)展示根節點或當前節點數據;
(c)遞歸調用pre-order函數遍歷左子樹;
(d)遞歸調用pre-order函數遍歷右子樹。
pre-order遍歷屬於拓撲排序後的遍歷,父節點總是在任何子節點之前被訪問。該遍歷方式的圖示如下:

遍歷次序依次為:F -B -A-D- C-E-G- I-H.

(a)檢查當前節點是否為空;
(b)遞歸調用in-order函數遍歷左子樹;
(c)展示根節點或當前節點數據;
(d)遞歸調用in-order函數遍歷右子樹。
在二叉樹搜索中,in-order遍歷以排序順序訪問節點數據。該遍歷方式的圖示如下:

遍歷次序依次為:A -B - C - D - E - F - G -H-I

(a)檢查當前節點是否為空;
(b)遞歸調用out-order函數遍歷右子樹;
(c)展示根節點或當前節點數據;
(d)遞歸調用out-order函數遍歷左子樹。
該遍歷方式與LNR類似,但先遍歷右子樹後遍歷左子樹。仍然以圖2為例,遍歷次序依次為:H- I-G- F- B- E- D- C- A.

(a)檢查當前節點是否為空;
(b)遞歸調用post-order函數遍歷左子樹;
(c)遞歸調用post-order函數遍歷右子樹;
(d)展示根節點或當前節點數據。
post-order遍歷圖示如下:

遍歷次序依次為:A-C-E-D-B-H-I-G-F.

pre-order遍歷方式使用場景:用於創建樹或圖的副本;
in-order遍歷使用場景:二叉樹遍歷;
post-order遍歷使用場景:刪除樹

遍歷追蹤也稱樹的序列化,是所訪問根節點列表。無論是pre-order,in-order或是post-order都無法完整的描述樹特性。給定含有不同元素的樹結構,pre-order或post-order與in-order遍歷方式結合起來使用才可以描述樹的獨特性。

樹或圖形的訪問也可以按照節點所處的級別進行遍歷。在每次訪問下一層級節點之前,遍歷所在高層級的所有節點。BFS從根節點(圖的任意節點可作為根節點)出發,在移動到下一節點之前訪問所有相同深度水平的相鄰節點。

BFS的遍歷方法圖示如下:

遍歷次序依次為: F-B-G-A-D-I-C-E-H.

圖演算法相關的R包為igraph,主要包括圖的生成、圖計算等一系列演算法的實現。

使用方法:

參數說明:

示例:

結果展示:

DFS R輸出節點排序:

使用方法:

參數含義同dfs
示例:

結果展示:

BFS R輸出節點排序:

以尋找兩點之間的路徑為例,分別展示BFS及DFS的實現。圖示例如下:

示例:

輸出結果:

示例:

輸出結果:

[1] 維基網路: https://en.wikipedia.org/wiki/Tree_traversal
[2] GeeksforGeeks: https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
[3] http://webdocs.cs.ualberta.ca/~holte/T26/tree-traversal.html
[4]Martin Broadhurst, Graph Algorithm: http://www.martinbroadhurst.com/Graph-algorithms.html#section_1_1
[5]igraph: https://igraph.org/r/doc/dfs.html
[6]igraph: https://igraph.org/r/doc/bfs.html
[7] Depth-First Search and Breadth-First Search in python: https://eddmann.com/posts/depth-first-search-and-breadth-first-search-in-python/

Ⅱ DFS(深搜)演算法

深度優先搜索演算法(Depth-First-Search) :是一種用於遍歷或搜索樹或圖的演算法。 沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分支。當節點v的所在邊都己被探尋過或者在搜尋時結點不滿足條件,搜索將回溯到發現節點v的那條邊的起始節點。整個進程反復進行直到所有節點都被訪問為止。

話說大詩人李白,一生好飲。幸好他從不開車。

一天,他提著酒壺,從家裡出來,酒壺中有酒2斗。他邊走邊唱:

無事街上走,提壺去打酒。
逢店加一倍,遇花喝一斗。

這一路上,他一共遇到店5次,遇到花10次,已知最後一次遇到的是花,他正好把酒喝光了。

請你計算李白遇到店和花的次序,可以把遇店記為a,遇花記為b。則:babaabbabbabbbb 就是合理的次序。像這樣的答案一共有多少呢?請你計算出所有可能方案的個數(包含題目給出的)。

注意:通過瀏覽器提交答案。答案是個整數。不要書寫任何多餘的內容。

答案:14

小明剛剛看完電影《第39級台階》,離開電影院的時候,他數了數禮堂前的台階數,恰好是39級!
站在台階前,他突然又想著一個問題:
如果我每一步只能邁上1個或2個台階。先邁左腳,然後左右交替,最後一步是邁右腳,也就是說一共要走偶數步。那麼,上完39級台階,有多少種不同的上法呢?
請你利用計算機的優勢,幫助小明尋找答案。

要求提交的是一個整數。
注意:不要提交解答過程,或其它的輔助說明文字。

Ⅲ c++DFS演算法問題。

這個題是比較基本的DFS問題,建議你自己多看多試一下,自己做出來意義更大一點。我想提供給你另外一種思路,時間復雜度更低,對於每個坐標(X,Y)可以從(x-1,y)和(x,y-1)到達,所以到這一點的可能數就是到達兩個先驅點的方案數量的和,把黑洞設置成0就行了

Ⅳ 數據結構C語言版 圖的遍歷 DFS和BFS演算法,用鄰接矩陣儲存 急阿在線等 求大神指點

#include <iostream>
#include<string.h>
#include<stack>
#include<queue>
const int Max=100;
const int VISITED=101010;
const int UNVISITED=111111;
const int AFFINITY=101010;
const int INFINITY=111111;
using namespace std;
class Edge
{
public:
int start;
int end;
int weight;

Edge(int st=0,int en=0,int w=0):start(st),end(en),weight(w){}
bool operator>(Edge oneEdge){return weight>oneEdge.weight?true:false;}
bool operator<(Edge oneEdge){return weight<oneEdge.weight?true:false;}
bool operator!=(Edge oneEdge)
{
if(weight!=oneEdge.weight||start!=oneEdge.start||end!=oneEdge.end)
return true;
return false;
}

};

class AdjGraf
{
private:
int verticesNum;
int edgeNum;

int **matrix;

int *Mark;
public:

AdjGraf(int vert)
{
int i=0,j=0;
verticesNum=vert;
matrix=(int**)new int*[vert];
for(i=0;i<vert;i++)
matrix[i]=new int[vert];

Mark=new int[vert];
for(i=0;i<vert;i++)
for(j=0;j<vert;j++)
{
matrix[i][j]=0;

}
for( int m=0;m<verticesNum;m++)

Mark[m]=UNVISITED;

}

~AdjGraf();
//返回與頂點oneVertex相關聯的第一條邊
Edge FirstEdge(int oneVertex);
//返回與邊PreEdge有相同關聯頂點oneVertex的下一條邊
Edge NextEdge( Edge preEdge);

//添加一條邊
void setEdge(int fromVertex,int toVertex,int weight);
//刪一條邊
void delEdge(int fromVertex,int toVertex);
//如果oneEdge是邊則返回TRUE,否則返回FALSE
bool IsEdge( Edge oneEdge)
{
if(oneEdge.start>=0&&oneEdge.start<verticesNum&&
oneEdge.end>=0&&oneEdge.end<verticesNum)
return true;
else return false;
}
//返回邊oneEdge的始點
int FromVertex(Edge oneEdge){return oneEdge.start;}
//返回邊oneEdge的終點
int ToVertex(Edge oneEdge){return oneEdge.end;}
//返回邊oneEdge的權
int Weight(Edge oneEdge){return oneEdge.weight;}
void visit(int i){cout<<i+1<<" ";}
void BFS(int i=1);
void DFS(int i);
void DFSTraverse(int v);
void DFSNoReverse(int f=1);

Edge UNVISITEDEdge(int f);
};

AdjGraf::~AdjGraf()
{
for(int i=0;i<verticesNum;i++)
delete[]matrix[i];
delete[]matrix;
}

Edge AdjGraf::FirstEdge(int oneVertex)
{ int i;
Edge tempEdge;
tempEdge.start=oneVertex;
for( i=0;i<verticesNum;i++)
if(matrix[oneVertex][i]!=0)
break;
tempEdge.end=i;
tempEdge.weight=matrix[oneVertex][i];
return tempEdge;
}

Edge AdjGraf ::NextEdge( Edge preEdge)
{
Edge tempEdge;
tempEdge.start=preEdge.start;
int i=0;
for(i=preEdge.end+1;i<verticesNum;i++)
if(matrix[preEdge.start][i]!=0)
break;
tempEdge.end=i;
tempEdge.weight=matrix[preEdge.start][i];

return tempEdge;

}

void AdjGraf::setEdge(int fromVertex,int toVertex,int weight)
{
if(matrix[fromVertex-1][toVertex-1]==0)

edgeNum++;
matrix[fromVertex-1][toVertex-1]=weight;

}

void AdjGraf::delEdge(int fromVertex,int toVertex)
{
if(matrix[fromVertex][toVertex]==0)
edgeNum--;
matrix[fromVertex][toVertex]=0;

}
/*************遞歸實現深度優先****************/
void AdjGraf::DFS(int i)
{

visit(i);
Mark[i]=VISITED;
for(Edge e=FirstEdge(i);IsEdge(e);e=NextEdge(e))
if(Mark[ToVertex(e)] == UNVISITED)
DFS(ToVertex(e));

}
void AdjGraf::DFSTraverse(int v)
{
v--;
int i;
for(i=0;i<verticesNum;i++)
Mark[i]=UNVISITED;
for(i=v;i<v+verticesNum;i++)
if (Mark[i]== UNVISITED)
DFS(i);
}

Edge AdjGraf::UNVISITEDEdge(int f)
{ int i;

for( Edge e=FirstEdge(f);IsEdge(e);e=NextEdge(e))
if(Mark[e.end]==UNVISITED)
return e;

return Edge(verticesNum,verticesNum,0) ;

}
/*************非遞歸實現深度優先**************/
void AdjGraf::DFSNoReverse(int f)
{
f--;
int i,counter=0,j,flag;
stack<int>Temp;
for(i=0;i<verticesNum;i++)
Mark[i]=UNVISITED;
flag=f;
while(counter<12)
{

while(flag!=verticesNum&&IsEdge(UNVISITEDEdge(flag))||!Temp.empty())
{
// Edge tempEdge=UNVISITEDEdge(j);
while(flag!=verticesNum&&Mark[flag]==UNVISITED)
{

visit(flag);
Mark[flag]=VISITED;
Temp.push(flag);
flag=UNVISITEDEdge(flag).end;
}

if(!Temp.empty())
{

flag=UNVISITEDEdge(Temp.top()).end;
Temp.pop();
}

}

if(Mark[counter]==UNVISITED) flag=counter;
else counter++;
}
}

/*************非遞歸實現廣度優先**************/
void AdjGraf::BFS(int v)
{
int i;
v--;
for( i=0;i<verticesNum;i++)
Mark[i]=UNVISITED;

queue<int>tempqueue;
i=0;
/*********v先從指定位置開始,然後從v=0,1,2......
依次檢查是否有孤立結點*****************/
while(i<verticesNum)
{
tempqueue.push(v);
while(!tempqueue.empty())
{
v=tempqueue.front();
tempqueue.pop();
if(Mark[v]==UNVISITED)
{
visit(v);
Mark[v]=VISITED;

for(Edge e=FirstEdge(v);IsEdge(e);e=NextEdge(e))
{
v=ToVertex(e);
tempqueue.push(v);

}

}

}
/***********防止出現孤立點****************/
if(Mark[i]==VISITED) i++;
else v=i;
}

}

int main()
{
AdjGraf Graph(12);
Graph.setEdge(1,2,1);
Graph.setEdge(2,1,1);
Graph.setEdge(1,3,5);
Graph.setEdge(3,1,5);/** V1 V12 V11 */
Graph.setEdge(2,4,3);/** / \ / \ */
Graph.setEdge(4,2,3);/** v2 v3 V10 V9 */
Graph.setEdge(2,5,7);/** / \ / \ */
Graph.setEdge(5,2,7);/** v4 v5 v6-v7 */
Graph.setEdge(4,8,4);/** \ / */
Graph.setEdge(8,4,4);/** v8 */
Graph.setEdge(5,8,3);
Graph.setEdge(8,5,3);
Graph.setEdge(3,6,2);
Graph.setEdge(6,3,2);
Graph.setEdge(3,7,1);
Graph.setEdge(7,3,1);
Graph.setEdge(6,7,6);
Graph.setEdge(7,6,6);
Graph.setEdge(12,9,6);
Graph.setEdge(9,12,6);
Graph.setEdge(12,10,6);
Graph.setEdge(10,12,6);
Graph.setEdge(11,11,6);
cout<<"DFSTraverse:"<<endl;
Graph.DFSTraverse(3);
cout<<endl;
cout<<"DFSNoReverse:"<<endl;
Graph.DFSNoReverse(3);
cout<<endl;
cout<<"BFS:"<<endl;
Graph.BFS(3);
cout<<endl;

return 0;

}

以上代碼運行環境codeblocks 程序採用DFS遞歸演算法 DFS非遞歸演算法 BFS非遞歸演算法
望採納~

Ⅳ 基本演算法——深度優先搜索(DFS)和廣度優先搜索(BFS)

        深度優先搜索和廣度優先搜索,都是圖形搜索演算法,它兩相似,又卻不同,在應用上也被用到不同的地方。這里拿一起討論,方便比較。

一、深度優先搜索

        深度優先搜索屬於圖演算法的一種,是一個針對圖和樹的遍歷演算法,英文縮寫為DFS即Depth First Search。深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。其過程簡要來說是對每一個可能的分支路徑深入到不能再深入為止,而且每個節點只能訪問一次。

基本步奏

(1)對於下面的樹而言,DFS方法首先從根節點1開始,其搜索節點順序是1,2,3,4,5,6,7,8(假定左分枝和右分枝中優先選擇左分枝)。

(2)從stack中訪問棧頂的點;

(3)找出與此點鄰接的且尚未遍歷的點,進行標記,然後放入stack中,依次進行;

(4)如果此點沒有尚未遍歷的鄰接點,則將此點從stack中彈出,再按照(3)依次進行;

(5)直到遍歷完整個樹,stack里的元素都將彈出,最後棧為空,DFS遍歷完成。

二、廣度優先搜索

        廣度優先搜索(也稱寬度優先搜索,縮寫BFS,以下採用廣度來描述)是連通圖的一種遍歷演算法這一演算法也是很多重要的圖的演算法的原型。Dijkstra單源最短路徑演算法和Prim最小生成樹演算法都採用了和寬度優先搜索類似的思想。其別名又叫BFS,屬於一種盲目搜尋法,目的是系統地展開並檢查圖中的所有節點,以找尋結果。換句話說,它並不考慮結果的可能位置,徹底地搜索整張圖,直到找到結果為止。基本過程,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。一般用隊列數據結構來輔助實現BFS演算法。

基本步奏

(1)給出一連通圖,如圖,初始化全是白色(未訪問);

(2)搜索起點V1(灰色);

(3)已搜索V1(黑色),即將搜索V2,V3,V4(標灰);

(4)對V2,V3,V4重復以上操作;

(5)直到終點V7被染灰,終止;

(6)最短路徑為V1,V4,V7.

Ⅵ 求有權無向圖的DFS演算法

深度優先遍歷類似於樹的先序遍歷,俗稱一條路走到黑,然後再考慮回溯的問題,回溯到最近訪問的頂點並看它是否還有相鄰頂點未訪問,若無繼續往前回溯。

我下面寫寫核心偽代碼,其他諸如圖的類型定義、還有你要對每個結點做的具體操作(我在代碼中用visit()函數來代替了,具體做啥操作根據題目來)我就不寫了。
bool visited[MSX_VERTEX_NUM]; //標記訪問數組
void DFS_Traverse(Grath G) //對圖G進行DFS
{
for(v=0;v<G.vexnum;++v)

{
visited[v]=false; //初始化已訪問標記數據

}
for(v=0;v<G.vexnum;++v) //假設從v=0開始遍歷

{
if(!visited[v])

DFS(G,v);

}

}
void DFS(Graph G,int v) //從頂點v出發,用遞歸的思想,深度優先遍歷
{
visit(v); //這里的visit()就是對頂點v的具體操作,題目是啥就自己寫啥

visited[v]=true; //標記已訪問

for(w=FirstNeighbor(G,v);w>=0;w=NextNeighbor(G,v,w))

//從最近結點開始,依次找相鄰結點
{
if(!visited[w]) //w為還未訪問的相鄰結點

{
DFS(G,w);

}
}
}

Ⅶ DFS的演算法詳解

首先選定圖的類別(有向圖、無向圖),再選定圖的存儲結構,根據輸入的頂點或者邊建立圖;並把相應的鄰接表或者鄰接矩陣輸出; 根據已有的鄰接矩陣或鄰接表用遞歸方法編寫深度優先搜索遍歷演算法,並輸出遍歷結果; 圖的深度遍歷原則:
1 如果有可能,訪問一個領接的未訪問的節點,標記它,並把它放入棧中。
2 當不能執行規則 1 時,如果棧不為空,則從棧中彈出一個元素。
3 如果不能執行規則 1 和規則 2 時,則完成了遍歷。
代碼中的圖使用的是Graph 圖-鄰接矩陣法 來表示,其他的表示法請見:Graph 圖-鄰接表法
代碼中的Stack為輔助結構,用來記載訪問過的節點。棧的詳細描述可以見:ArrayStack 棧 ,LinkedStack 棧 。
Vertex表示圖中的節點,其中包含訪問,是否訪問,清除訪問標志的方法。 Graph.main:提供簡單測試。代碼可以以指定下標的節點開始作深度遍歷。 代碼比較簡單,除了Graph.dsf(int i)深度優先遍歷演算法外沒有過多注釋。

閱讀全文

與演算法dfs例題相關的資料

熱點內容
dvd光碟存儲漢子演算法 瀏覽:757
蘋果郵件無法連接伺服器地址 瀏覽:962
phpffmpeg轉碼 瀏覽:671
長沙好玩的解壓項目 瀏覽:142
專屬學情分析報告是什麼app 瀏覽:564
php工程部署 瀏覽:833
android全屏透明 瀏覽:732
阿里雲伺服器已開通怎麼辦 瀏覽:803
光遇為什麼登錄時伺服器已滿 瀏覽:301
PDF分析 瀏覽:484
h3c光纖全工半全工設置命令 瀏覽:141
公司法pdf下載 瀏覽:381
linuxmarkdown 瀏覽:350
華為手機怎麼多選文件夾 瀏覽:683
如何取消命令方塊指令 瀏覽:349
風翼app為什麼進不去了 瀏覽:778
im4java壓縮圖片 瀏覽:362
數據查詢網站源碼 瀏覽:150
伊克塞爾文檔怎麼進行加密 瀏覽:890
app轉賬是什麼 瀏覽:163