『壹』 推薦演算法有哪些
應該說分為兩類:個性化和非個性化,「讓全局優秀的內容被大家看到」應該算是非個性化,熱門榜單/最多觀看這類方法可以簡單解決這個問題;不同的人對於「好」的理解不一樣,換句話說也就是偏好不同,所以新加入的好內容我認為是個性化問題。
個性化的兩個主要思想八個字概括之:物以類聚、人以群分。主要的方法及變種應該有很多,像協同過濾、基於內容的、基於標簽的等等。
『貳』 推薦演算法的介紹
推薦演算法是計算機專業中的一種演算法,通過一些數學演算法,推測出用戶可能喜歡的東西。
『叄』 推薦演算法的基於知識推薦
基於知識的推薦(Knowledge-based Recommendation)在某種程度是可以看成是一種推理(Inference)技術,它不是建立在用戶需要和偏好基礎上推薦的。基於知識的方法因它們所用的功能知識不同而有明顯區別。效用知識(Functional Knowledge)是一種關於一個項目如何滿足某一特定用戶的知識,因此能解釋需要和推薦的關系,所以用戶資料可以是任何能支持推理的知識結構,它可以是用戶已經規范化的查詢,也可以是一個更詳細的用戶需要的表示。
『肆』 推薦一些演算法比較好的書
劉汝佳的《演算法藝術與信息學競賽》,這本書很適合搞演算法競賽的看。
《演算法導論》這本書就不用多說了,經典
Udi Manber 的《Introction to Algorithms: A Creative Approach》中文名《演算法引論:一種創造性方法》
當然還有很多書,上面三本我有幸看過
『伍』 演算法 推薦演算法 還有什麼算fan
1、為每個物品(Item)構建一個物品的屬性資料(ItemProfile)2、為每個用戶(User)構建一個用戶的喜好資料(UserProfile)3、計算用戶喜好資料與物品屬性資料的相似度,相似度高意味著用戶可能喜歡這個物品,相似度低往往意味著用戶不喜歡這個物品。選擇一個想要推薦的用戶「U」,針對用戶U遍歷一遍物品集合,計算出每個物品與用戶U的相似度,選出相似度最高的k個物品,將他們推薦給用戶U——大功告成!下面將詳細介紹一下ItemProfiles和UserProfiles。
『陸』 演算法推薦服務是什麼
演算法推薦服務是:在本質上,演算法是「以數學方式或者計算機代碼表達的意見」。其中,推薦系統服務就是一個信息過濾系統,幫助用戶減少因瀏覽大量無效數據而造成的時間、精力浪費。
並且在早期的研究提出了通過信息檢索和過濾的方式來解決這個問題。到了上世紀90年代中期,研究者開始通過預測用戶對推薦的物品、內容或服務的評分,試圖解決信息過載問題。推薦系統由此也作為獨立研究領域出現了。
用演算法推薦技術是指:應用演算法推薦技術,是指利用生成合成類、個性化推送類、排序精選類、檢索過濾類、調度決策類等演算法技術向用戶提供信息。
基於內容的推薦方法:根據項的相關信息(描述信息、標簽等)、用戶相關信息及用戶對項的操作行為(評論、收藏、點贊、觀看、瀏覽、點擊等),來構建推薦演算法模型。
是否推薦演算法服務會導致信息窄化的問題:
推薦技術並不是單純地「投其所好」。在一些專家看來,在推薦已知的用戶感興趣內容基礎上,如果能深入激發、滿足用戶的潛在需求,那麼演算法就能更好地滿足人對信息的多維度訴求。
在外界的印象里,個性化推薦就像漏斗一樣,會將推薦內容與用戶相匹配,傾向於向用戶推薦高度符合其偏好的內容,致使推薦的內容越來越窄化。
但與外界的固有認知相反,《報告》認為在行業實踐中,互聯網應用(特別是位於頭部的大型平台)有追求演算法多樣性的內在動力。
在對行業內代表性應用的數據分析後,《報告》發現,閱讀內容的類型數量是否夠多、所閱讀內容類型的分散程度是否夠高,與用戶是否能長期留存關聯密切,呈正相關。上述兩項指標對用戶長期留存的作用,可以與信息的展現總量、用戶的停留時長、用戶閱讀量等指標的影響相媲美。
『柒』 推薦下比較好的關於演算法的書
<<演算法導論>>(第二版)
經典中的經典,無需懷疑。
還有上acm.pku.e.cn,多做點ACM的題目。
『捌』 推薦演算法有什麼
推薦演算法有協同過濾,FM等演算法
『玖』 演算法推薦利弊分析
橫河或Fluke採用的平均演算法,算的是兩相的平均值,不能作為第三相的值。否則,將得到錯誤的結論。舉例說,a、b、c三相,b接單相電的N端,a、c一起接L端。此時,應該有:Uab=Ucb;Uca=0;若採用平均法,就有Uca=Uab=Ucb。
『拾』 推薦演算法有哪些
推薦演算法大致可以分為三類:基於內容的推薦演算法、協同過濾推薦演算法和基於知識的推薦演算法。 基於內容的推薦演算法,原理是用戶喜歡和自己關注過的Item在內容上類似的Item,比如你看了哈利波特I,基於內容的推薦演算法發現哈利波特II-VI,與你以前觀看的在內容上面(共有很多關鍵詞)有很大關聯性,就把後者推薦給你,這種方法可以避免Item的冷啟動問題(冷啟動:如果一個Item從沒有被關注過,其他推薦演算法則很少會去推薦,但是基於內容的推薦演算法可以分析Item之間的關系,實現推薦),弊端在於推薦的Item可能會重復,典型的就是新聞推薦,如果你看了一則關於MH370的新聞,很可能推薦的新聞和你瀏覽過的,內容一致;另外一個弊端則是對於一些多媒體的推薦(比如音樂、電影、圖片等)由於很難提內容特徵,則很難進行推薦,一種解決方式則是人工給這些Item打標簽。 協同過濾演算法,原理是用戶喜歡那些具有相似興趣的用戶喜歡過的商品,比如你的朋友喜歡電影哈利波特I,那麼就會推薦給你,這是最簡單的基於用戶的協同過濾演算法(user-based collaboratIve filtering),還有一種是基於Item的協同過濾演算法(item-based collaborative filtering),這兩種方法都是將用戶的所有數據讀入到內存中進行運算的,因此成為Memory-based Collaborative Filtering,另一種則是Model-based collaborative filtering,包括Aspect Model,pLSA,LDA,聚類,SVD,Matrix Factorization等,這種方法訓練過程比較長,但是訓練完成後,推薦過程比較快。 最後一種方法是基於知識的推薦演算法,也有人將這種方法歸為基於內容的推薦,這種方法比較典型的是構建領域本體,或者是建立一定的規則,進行推薦。 混合推薦演算法,則會融合以上方法,以加權或者串聯、並聯等方式盡心融合。 當然,推薦系統還包括很多方法,其實機器學習或者數據挖掘裡面的方法,很多都可以應用在推薦系統中,比如說LR、GBDT、RF(這三種方法在一些電商推薦裡面經常用到),社交網路裡面的圖結構等,都可以說是推薦方法。