㈠ 交叉編譯鏈設置環境變數的作用是什麼
作用是以後你在編譯的時候不需要在把所有地址都填進去了 方便。。
nfs是用來共享文件的,首先安裝
sdk軟體工具開發包
㈡ 嵌入式ARM linux操作系統中如何構建交叉開發環境
這個問題相當專業了,之前我去周立功那邊了解過的。
按照以下步驟進行安裝:
1) 安裝32位的兼容庫和libncurses5-dev庫
在安裝交叉編譯工具之前需要先安裝32位的兼容庫和libncurses5-dev庫,安裝32兼容庫需要從ubuntu的源庫中下載,所以需要在Linux主機系統聯網的條件下,通過終端使用如下命令安裝:
vmuser@Linux-host ~$sudo apt-get install ia32-libs
若Linux主機系統沒有安裝32位兼容庫,在使用交叉編譯工具的時候可能會出現錯誤:
-bash: ./arm-fsl-linux-gnueabi-gcc: 沒有那個文件或目錄
在終端中使用如下命令則可以安裝libncurses5-dev庫。
vmuser@Linux-host ~$sudo apt-get install libncurses5-dev
如果沒有安裝此庫,在使用make menucofig時出現如下所示的錯誤:
*** Unableto find the ncurses libraries or the
*** required headerfiles.
*** 'makemenuconfig' requires the ncurses libraries.
***
Installncurses (ncurses-devel) and try again.
***
make[1]: *** [scripts/kconfig/dochecklxdialog] 錯誤 1
make: *** [menuconfig] 錯誤 2
2) 安裝交叉編譯工具鏈
將交叉編譯工具「gcc-4.4.4-glibc-2.11.1-multilib-1.0_EasyARM-iMX283.tar.bz2」文件通過U盤的方式拷貝到Linux主機的「/tmp」目錄下,然後執行如下命令進行解壓安裝交叉編譯工具鏈:
vmuser@Linux-host ~$ cd /tmp
vmuser@Linux-host ~$ sudo tar -jxvfgcc-4.4.4-glibc-2.11.1-multilib-1.0_EasyARM-iMX283.tar.bz2 -C /opt/
vmuser@Linux-host /tmp$ # 輸入vmuser用戶的密碼「vmuser」
執行完解壓命令後,交叉編譯工具鏈將被安裝到「/opt/gcc-4.4.4-glibc-2.11.1-multilib-1.0」目錄下。交叉編譯器的具體目錄是「/opt/gcc-4.4.4-glibc-2.11.1-multilib-1.0/arm-fsl-linux-gnueabi/bin」,為了方便使用,還需將該路徑添加到PATH環境變數中,其方法為:修改「/etc/profile」文件,具體操作方法如下:
在終端中輸入如下指令
vmuser@Linux-host ~$ sudo vi /etc/profile # 若提示輸入密碼,則輸入「vmuser」
用vi編輯器打開「/etc/profile」文件後,在文件末尾增加如下一行內容:
export PATH=$PATH:/opt/gcc-4.4.4-glibc-2.11.1-multilib-1.0/arm-fsl-linux-gnueabi/bin
文件修改並保存後,再在終端中輸入如下指令,更新環境變數,使設置生效。
vmuser@Linux-host ~$source /etc/profile
在終端輸入arm-fsl-linux-gnueabi-並按TAB鍵,如果能夠看到很多arm-fsl-linux-gnueabi-前綴的命令,則基本可以確定交叉編譯器安裝正確,如下圖所示。
㈢ 如何交叉編譯開源庫
所謂的搭建交叉編譯環境,即安裝、配置交叉編譯工具鏈。在該環境下編譯出嵌入式Linux系統所需的操作系統、應用程序等,然後再上傳到目標機上。
交叉編譯工具鏈是為了編譯、鏈接、處理和調試跨平台體系結構的程序代碼。對於交叉開發的工具鏈來說,在文件名稱上加了一個前綴,用來區別本地的工具鏈。例如,arm-linux-表示是對arm的交叉編譯工具鏈;arm-linux-gcc表示是使用gcc的編譯器。除了體系結構相關的編譯選項以外,其使用方法與Linux主機上的gcc相同,所以Linux編程技術對於嵌入式同樣適用。不過,並不是任何一個版本拿來都能用,各種軟體包往往存在版本匹配問題。例如,編譯內核時需要使用arm-linux-gcc-4.3.3版本的交叉編譯工具鏈,而使用arm-linux-gcc-3.4.1的交叉編譯工具鏈,則會導致編譯失敗。
那麼gcc和arm-linux-gcc的區別是什麼呢?區別就是gcc是linux下的C語言編譯器,編譯出來的程序在本地執行,而arm-linux-gcc用來在linux下跨平台的C語言編譯器,編譯出來的程序在目標機(如ARM平台)上執行,嵌入式開發應使用嵌入式交叉編譯工具鏈。
工具/原料
電腦系統:win7系統。虛擬機系統:workstation6.5 。虛擬機安裝的linux版本:fedora9.0。內核:linux2.6.25 。
方法/步驟
1
我使用的交叉編譯工具鏈是arm-linux-gcc-4.4.3,把它放在linux系統的路徑是圖一
2
在linux系統的路徑/home/song/share下放了交叉編譯工具鏈arm-linux-gcc-4.4.3的壓縮包,另一個版本的不用。有的人可能會問到怎麼把這個壓縮包弄到虛擬機的linux的系統的,我是通過samba服務從主機復制到虛擬機的,這里的share文件夾就是我samba伺服器的工作目錄,多了不說,這不是重點。
然後通過命令mkdir embedded 建立一個arm-linux-gcc的安裝目錄,如圖二所示。當然安裝路徑和目錄名稱「embedded」可以依自己的喜好而定。
步驟閱讀
然後通過命令將share文件夾下的arm-linux-gcc-4.4.3.tar.gz復制到這里的embedded文件夾下, 當然這里你也可以不進行這一步我這是為了方便以後管理,將arm-linux-gcc安裝到embedded文件夾下,方便以後尋找。
然後使用tar命令:tar zxvf arm-gcc-4.4.3.tar.gz將embedded文件夾下的arm-linux-gcc-4.4.3.tar.gz解壓縮安裝到當前目錄下
執行完解壓縮命令,就已經將交叉編譯工具鏈arm-linux-gcc-4.4.3安裝到linux系統上了,這里默認安裝到了圖六所示的路徑上。
接下來配置系統環境變數,把交叉編譯工具鏈的路徑添加到環境變數PATH中去,這樣就可以在任何目錄下使用這些工具。 vi /etc/profile 編輯profile文件,添加環境變數。
在profile中的位置處,添加圖八所示的紅線標注的一行,路徑就是圖六中的紅線標注的路徑後面加上/4.4.3/bin。
圖八中的路徑一定是你自己的安裝路徑,可以使用pwd命令查找一下那個bin目錄的路徑。添加完路徑後,保存退出。接下來使用命令:source /etc/profile,是修改後的profile文件生效,如圖九所示。
然後,使用命令:arm-linux-gcc -v查看當前交叉編譯鏈工具的版本信息,如圖九中的紅線標注第③行所示。很明顯 可以看到,如果不執行第②步,則查看版本信息不成功。
然後驗證交叉編譯工具鏈是否安裝成功並且可以使用,如圖九所示,隨便找一個目錄編輯一個hello源代碼。
編輯好hello.c文件後,保存退出。然後使用交叉編譯器對hello.c進行編譯,並生成可執行文件hello
這里生成的hello文件並不能像gcc編譯出來的文件那樣直接使用「./hello」命令執行並顯示內容 因為它是一個二進制文件,只能下載到開發板上執行!
至此,搭建交叉編譯環境步驟結束。
㈣ 怎樣交叉編譯qt-x11-opensource-src-4.3.2
可以的,只需要把QtVersion設置好就可以了。
點擊Tools->Options->Qt4->Qt Versions.
然後添加你已經編譯的Qtembedded目錄進去,就可以編譯了。
很簡單的。
還有,在你的工程中的Release配置中,必須保證Qt Version是Qtembedded,也就是你剛才新建的那個Qt Version
Qt Creator默認是Default Qt version的。
這需要點擊左邊的Projects來修改。
如果你前面把Default Qt Version改為Qtembedded了,就不用再改了。
另外,交叉編譯的可執行文件是不能用QtCreator調試的,因為硬體平台不一樣。
㈤ 如何交叉編譯 動態庫
首先,你要保證你編譯的程序使用的交叉編譯鏈是開發板支持的,例如arm-linux-4.3.2,一般是在虛擬機下面的linux系統下的/etc/profile裡面添加編譯鏈路徑;接著,需要確保使用寬兄的內核是開發板目前使用的內核,一般MINI2440是使用linux-2.6.30版本的,這個要在程序的makefile文件裡面改;還有,如果你使用靜態編譯方式文件會比較大,但是不用依賴庫,如果是用動態編譯,文件就比較小,但是依賴動態庫,如果放遲慶到開發板上運行提示缺少動態庫,就證明你沒有把動態庫放進開發板的/lib裡面,可以用ldd指令查看需要哪些庫;最後,記住移植的方式可以使用NFS或者TFTP,U盤也可以,放到開發板上後必須在文件存放的當前目錄下碼巧握./可執行文件,或者把文件放入/bin或者/sbin下面,就可以直接可執行文件,不用加./你可以在程序裡面加些調試信息輸出,例如printf,以此證明有執行。
㈥ 能否在windows上搭建arm-linux交叉編譯環境
這個估計沒必要,安裝一個虛擬機,然後安裝一個桌面版的里Linux系統,再在系統中安裝一個vim編輯器,再安裝一個gdb調試器,最後再arm-linux-gcc就可以編譯c文件了,要是你的很多源程序文件都在windows系統中,你可以設置Windows與Linux共享文件。這些東西在網上都可以找到教程,剛開始可能覺得Linux系統很不方便,但是要熟悉Linux系統就必須經常呆在Linux系統中,希望能幫到你。
㈦ 如何在windows上用ndk交叉編譯其他平台程序
目標 :編譯arm64的.so庫
編譯方法:理論上應該有兩種交叉編譯方法,法一,在Linux伺服器上安裝交叉工具鏈,直接用交叉工具鏈進行編譯鏈接;法二,使用ndk完成交叉編譯,因為
ndk已經安裝好交叉編譯工具鏈,以及相關的系統庫和系統頭文件了。這兩種方法的區別在於,linux伺服器上的編譯使用的makefile和ndk使用的.mk
文件顯然不同。原因是ndk作為一個集成編譯環境,制定了一套特定的規則用於生成最終的編譯腳本。
這里簡單總結下,如何在windows用ndk進行交叉編譯arm64目標平台的.so庫:
step1:找到ndk開發工具包,官網之類的都可以下載,android-ndk64-r10-windows-x86_64.rar文件
step2:解壓上述ndk工具包,將包含程序源文件和頭文件的文件夾testProject都放入android-ndk-r10下的samples目錄下。
放在其他地方當然也可以,但是後續相對路徑之類的不太好加,既然其他例子都放這,把代碼放這編譯是最保險的了。
step3:在testProject中增加一個jni的文件夾,必須要添加!!!!!!
step4:在jni文件夾中,添加一個Android.mk的文件,必須要添加!!!!!
step5:在jni文件夾中,添加一個Application.mk的文件與Android.mk並列,必須要添加!!!!!
step6:Android.mk和Application.mk合起來就類似於linux環境下的makefile編譯文件。
如何寫Android.mk,可以參考例子helllo-jni中jni文件夾下的Android.mk。
LOCAL_PATH:=$(call my-dir) #必須要寫的
include $(CLEAR_VARS) #必須要寫的
LOCAL_MODULE:=hello-jni #編譯出來的模塊名稱
LOCAL_SRC_FILES:=hello-jni.c #制定編譯的源文件名稱
include $(BUILD_SHARED_LIBRARY)#放在最後
除了上述變數之外,還有其他的指定的變數,
LOCAL_CFLAGS,用於指定編譯選項,這個和makefile中是完全一樣的,可以指定編譯選項-g,也可以指定編譯宏及宏值
LOCAL_LDLIBS,用於指定鏈接的依賴庫,這個可以makefile也是完全一樣的,可以指定鏈接庫用-l庫名,以及指定庫搜索路徑用_L路徑名
LOCAL_STATIC_LIBRARIES,指定鏈接的靜態庫名,makefile中沒有
LOCAL_C_INCLUDES,用於指定編譯頭文件的路徑,和makefile中不同,路徑前不需要加-I,直接寫路徑即可,可以是相對路徑或絕對路徑,
多個路徑之間用空格隔開。
編寫上述Android.mk碰到的問題有,
(1)使用默認的系統自動載入stl庫頭文件總是出錯,只好手動在LOCAL_STATIC_LIBRARIES指定sources/cxx-stl/stlport/stlport來完成對#include<string>這種c++形式的頭文件載入
(2)使用$(SYSROOT)/usr/include來完成對系統庫頭文件的載入,結果找不到sem_t符號,只好指定platforms/android-L/arch-arm64/usr/include
step7:Application.mk編寫
APP_STL指定使用的stl移植庫,動態或者靜態都行
APP_CPPFLAGS,指定app編譯的編譯選項
APP_ABI指定abi規范類型,例如arm64-v8a,也可以寫成ALL就是把所有的類型全部編一編
APP_PLATFORM指定編譯的platform名稱,這里可以寫成android-L或者不指定全編。
step8:編譯完成後,運行。
啟動cmd,使用cd /D進行到testProject的jni目錄下
step9:將android-ndk-r10下的ndk-build.cmd直接拖拽到cmd中,此時直接敲回車,就可以編譯了。當然也可以加一個 clean,清除編譯中間文件。
step10:檢查下編譯結果,編譯成功後在testProject中多了兩個文件夾與jni並列的,libs和obj。
編譯鏈接後的結果就在libs中!
㈧ 如何使用CMake進行交叉編譯
cmake交叉編譯配置
很多時候,我們在開發的時候是面對嵌入式平台,因此由於資源的限制需要用到相關的交叉編譯。即在你host宿主機上要生成target目標機的程序。裡面牽扯到相關頭文件的切換和編譯器的選擇以及環境變數的改變等,我今天僅僅簡單介紹下相關CMake在面對交叉編譯的時候,需要做的一些准備工作。
CMake給交叉編譯預留了一個很好的變數CMAKE_TOOLCHAIN_FILE,它定義了一個文件的路徑,這個文件即toolChain,裡面set了一系列你需要改變的變數和屬性,包括C_COMPILER,CXX_COMPILER,如果用Qt的話需要更改QT_QMAKE_EXECUTABLE以及如果用BOOST的話需要更改的BOOST_ROOT(具體查看相關Findxxx.cmake裡面指定的路徑)。CMake為了不讓用戶每次交叉編譯都要重新輸入這些命令,因此它帶來toolChain機制,簡而言之就是一個cmake腳本,內嵌了你需要改變以及需要set的所有交叉環境的設置。
toolChain腳本中設置的幾個重要變數
1.CMAKE_SYSTEM_NAME:
即你目標機target所在的操作系統名稱,比如ARM或者Linux你就需要寫"Linux",如果Windows平台你就寫"Windows",如果你的嵌入式平台沒有相關OS你即需要寫成"Generic",只有當CMAKE_SYSTEM_NAME這個變數被設置了,CMake才認為此時正在交叉編譯,它會額外設置一個變數CMAKE_CROSSCOMPILING為TRUE.
2. CMAKE_C_COMPILER:
顧名思義,即C語言編譯器,這里可以將變數設置成完整路徑或者文件名,設置成完整路徑有一個好處就是CMake會去這個路徑下去尋找編譯相關的其他工具比如linker,binutils等,如果你寫的文件名帶有arm-elf等等前綴,CMake會識別到並且去尋找相關的交叉編譯器。
3. CMAKE_CXX_COMPILER:
同上,此時代表的是C++編譯器。
4. CMAKE_FIND_ROOT_PATH:
指定了一個或者多個優先於其他搜索路徑的搜索路徑。比如你設置了/opt/arm/,所有的Find_xxx.cmake都會優先根據這個路徑下的/usr/lib,/lib等進行查找,然後才會去你自己的/usr/lib和/lib進行查找,如果你有一些庫是不被包含在/opt/arm裡面的,你也可以顯示指定多個值給CMAKE_FIND_ROOT_PATH,比如
set(CMAKE_FIND_ROOT_PATH /opt/arm /opt/inst)
該變數能夠有效地重新定位在給定位置下進行搜索的根路徑。該變數默認為空。當使用交叉編譯時,該變數十分有用:用該變數指向目標環境的根目錄,然後CMake將會在那裡查找。
5. CMAKE_FIND_ROOT_PATH_MODE_PROGRAM:
對FIND_PROGRAM()起作用,有三種取值,NEVER,ONLY,BOTH,第一個表示不在你CMAKE_FIND_ROOT_PATH下進行查找,第二個表示只在這個路徑下查找,第三個表示先查找這個路徑,再查找全局路徑,對於這個變數來說,一般都是調用宿主機的程序,所以一般都設置成NEVER
6. CMAKE_FIND_ROOT_PATH_MODE_LIBRARY:
對FIND_LIBRARY()起作用,表示在鏈接的時候的庫的相關選項,因此這里需要設置成ONLY來保證我們的庫是在交叉環境中找的.
7. CMAKE_FIND_ROOT_PATH_MODE_INCLUDE:
對FIND_PATH()和FIND_FILE()起作用,一般來說也是ONLY,如果你想改變,一般也是在相關的FIND命令中增加option來改變局部設置,有NO_CMAKE_FIND_ROOT_PATH,ONLY_CMAKE_FIND_ROOT_PATH,BOTH_CMAKE_FIND_ROOT_PATH
8. BOOST_ROOT:
對於需要boost庫的用戶來說,相關的boost庫路徑配置也需要設置,因此這里的路徑即ARM下的boost路徑,裡面有include和lib。
9. QT_QMAKE_EXECUTABLE:
對於Qt用戶來說,需要更改相關的qmake命令切換成嵌入式版本,因此這里需要指定成相應的qmake路徑(指定到qmake本身)
toolChain demo
# this is required
SET(CMAKE_SYSTEM_NAME Linux)
# specify the cross compiler
SET(CMAKE_C_COMPILER /opt/arm/usr/bin/ppc_74xx-gcc)
SET(CMAKE_CXX_COMPILER /opt/arm/usr/bin/ppc_74xx-g++)
# where is the target environment
SET(CMAKE_FIND_ROOT_PATH /opt/arm/ppc_74xx /home/rickk/arm_inst)
# search for programs in the build host directories (not necessary)
SET(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
# for libraries and headers in the target directories
SET(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
SET(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
# configure Boost and Qt
SET(QT_QMAKE_EXECUTABLE /opt/qt-embedded/qmake)
SET(BOOST_ROOT /opt/boost_arm)
這樣就完成了相關toolChain的編寫,之後,你可以靈活的選擇到底採用宿主機版本還是開發機版本,之間的區別僅僅是一條-DCMAKE_TOOLCHAIN_FILE=./toolChain.cmake,更爽的是,如果你有很多程序需要做轉移,但目標平台是同一個,你僅僅需要寫一份toolChain放在一個地方,就可以給所有工程使用。