導航:首頁 > 源碼編譯 > 人文與基因和演算法

人文與基因和演算法

發布時間:2023-08-04 23:52:55

⑴ 基因遺傳演算法的主流是什麼

基因遺傳演算法是一種靈感源於達爾文自然進化理論的啟發式搜索演算法 該演算法反映了自然選擇的過程 即最適者被選定繁殖 並產生下一代
自然選擇的過程從選擇群體中最適應環境的個體開始 後代繼承了父母的特性 並且這些特性將添加到下一代中 如果父母具有更好的適應性 那麼它們的後代將更易於存活 迭代地進行該自然選擇的過程 最終 我們將得到由最適應環境的個體組成的一代
這一概念可以被應用於搜索問題中 我們考濾一個問題的諸多解決方案 並從中搜尋出最佳方案
遺傳演算法含以下五步
1.初始化
2.個體評價(計算適應度函數)
3.選擇運算
4.交叉運算
5.變異運算
初始化
該過程從種群的一組個體開始 且每一個體都是待解決問題的一個候選解
個體以一組參數(變數)為特徵 這些特徵被稱為基因 串聯這些基因就可以組成染色體(問題的解)
在遺傳演算法中 單個個體的基因組以字元串的方式呈現 通常我們可以使用二進制(1和0的字元串)編碼 即一個二進制串代表一條染色體串 因此可以說我們將基因串或候選解的特徵編碼在染色體中
個體評價利用適應度函數評估了該個體對環境的適應度(與其它個體徑爭的能力)每一個體都有適應評分 個體被選中進行繁殖的可能性取決於其適應度評分 適應度函數是遺傳演算法進化的驅動力 也是進行自然選擇的唯一標准 它的設計應結合求解問題本身的要求而定
選擇運算的目的是選出適應性最好的個體 並使它們將基因傳到下一代中 基於其適應度評分 我們選擇多對較優個體(父母)適應度高的個體更易被選中繁殖 即將較優父母的基因傳遞到下一代
交叉運算是遺傳演算法中最重要的階段 對每一對配對的父母 基因都存在隨機選中的交叉點
變異運算
在某些形成的新後代中 它們的某些基因可能受到低概率變異因子的作用 這意味著二進制位串中的某些位可能會翻轉
變異運算前後
變異運算可用於保持群內的多樣性 並防止過早收斂
終止
在群體收斂的情況下(群體內不產生與前一代差異較大的後代)該演算法終止 也就是說遺傳演算法提供了一組問題的解

閱讀全文

與人文與基因和演算法相關的資料

熱點內容
java跳轉到jsp 瀏覽:819
327平方根演算法 瀏覽:214
win7美化命令行終端 瀏覽:797
免加密狗圖片 瀏覽:485
一隻透明的鳥是什麼app 瀏覽:817
空氣壓縮機油批發商 瀏覽:69
linuxifexist 瀏覽:4
加密tf卡拷入文件 瀏覽:399
山西php工資 瀏覽:673
福州看病預約用什麼小程序app 瀏覽:238
php保留兩位小數不四捨五入 瀏覽:292
黑馬程序員路徑大全 瀏覽:1000
saas平台PHP 瀏覽:333
雲伺服器科學計算配置怎麼選 瀏覽:649
jar解壓命令 瀏覽:609
php正則問號 瀏覽:299
無線已加密不可上網是怎麼了 瀏覽:464
什麼app可以免費做手機 瀏覽:376
異性下載什麼app 瀏覽:680
51單片機程序單步視頻 瀏覽:241