導航:首頁 > 源碼編譯 > 鄰域搜索演算法優點

鄰域搜索演算法優點

發布時間:2023-08-07 16:16:58

❶ 圖像處理

第三章 圖像處理

        輸出圖像的像素值僅僅由輸入圖像的像素值決定。

        1.1 像素變換

              根據像素產生輸出像素,注意,這里的像素可以是多副圖片的像素。

        1.2 顏色變換

              彩色圖像的各通道間具有很強的相關性。

        1.3 合成和映射

              將前景對象從圖像背景中提取出來,被稱為摳圖;將對象插入另一圖像被稱為合成。

        1.4 直方圖均衡化

            對比度和亮度參數可以提升圖像的外觀,為了自動調節這兩個參數,有兩種方法,一種方法是尋找圖像中最亮的值和最暗的值,將它們映射到純白和純黑,另一種方法是尋找圖像的像素平均值,將其作為像素的中間灰度值,然後充滿范圍盡量達到可顯示的值。

        局部自適應直方圖均衡化,對於不同的區域採用不同的均衡化方法。缺點是會產生區塊效應,即塊的邊界處亮度不連續,為了消除這一效應,常採用移動窗口,或者在塊與塊之間的轉換函數進行平滑插值。

        1.5 應用:色調調整

        點運算元的常用領域是對照片的對比度和色調進行操作。

        與點運算元相對應的鄰域運算元是根據選定像素及周圍的像素來決定該像素的 輸出。鄰域運算元不僅用於局部色調調整,還用於圖像平滑和銳化,圖像的去噪。

        鄰域運算元的重要概念是卷積和相關,它們都是線性移不變運算元,滿足疊加原理和移位不變原理。

        填塞,當卷積核超出圖像邊界時,會產生邊界效應。有多種填塞方法,0填塞,常數填塞,夾取填塞,重疊填塞,鏡像填塞,延長。

        2.1 可分濾波器

        如果一個卷積運算可以分解為一維行向量卷積和一維列向量卷積,則稱該卷積核可分離。2D核函數可以看作一個矩陣K,當且僅當K的第一個奇異值為0時,K可分離。

        2.2 線性濾波器舉例

        最簡單的濾波器是移動平均或方框濾波器,其次是雙線性濾波器(雙線性核),高斯濾波器(高斯核),以上均為低通核,模糊核,平滑核。對於這些核函數效果的度量採用傅里葉分析。還有Sobel運算元和角點運算元。

        2.3 帶通和導向濾波器

        Sobel運算元是帶方向的濾波器的近似,先用高斯核平滑圖像,再用方向導數(拉普拉斯運算元)作用於圖像,得到導向濾波器,導向具有潛在的局部性以及很好的尺度空間特性。導向濾波器常用來構造特徵描述子和邊緣檢測器,線性結構通常被認為是類似邊緣的。

        區域求和表是指一定區域內所有像素值的和,又稱為積分圖像,它的有效計算方法是遞歸演算法(光柵掃描演算法),區域求和表用於對其他卷積核的近似,人臉檢測中的多尺度特徵,以及立體視覺中的差分平方和的計算。

        遞歸濾波器稱為無限脈沖響應(IIR),有時用於二維距離函數和連通量的計算,也可計算大面積的平滑計算。

       

        3.1 非線性濾波器

        中值濾波可以去除散粒雜訊,它的另一個優點是保邊平滑,即在濾除高頻雜訊時,邊緣不容易被柔化。

        雙邊濾波器思想的精髓在於,抑制與中心像素值差別較大的像素,而不是抑制固定百分比 的像素。在加權濾波器的基礎上,對權重系數進行了控制,即取決於定義域核(高斯核)和值域核(與中心像素值的相似度),兩者相乘得到雙邊濾波器核。

        迭代自適應平滑核各項異性擴散。

        3.2 形態學

        非線性濾波常用於二值圖像處理,二值圖像中最常見的運算元是形態學運算元,將二值結構元素與二值圖像卷積,根據卷積結果的閾值選擇二值輸出,結構元素可以是任何形狀。

        常見的形態學操作有膨脹,腐蝕,過半,開運算,閉運算。過半使銳利的角變得平滑,開運算和閉運算去除圖像中小的點和孔洞,並使圖像平滑。

        3.3 距離變換

        距離變換通過使用兩遍光柵掃描法,快速預計算到曲線或點集的距離,包括城街距離變換和歐氏距離變換。符號距離變換是基本距離變換的擴展,計算了所有像素到邊界像素的距離。

        3.4 連通域

        檢測圖像的連通量是半全局的圖像操作,連通量定義為具有相同輸入值的鄰接像素的區域,二值或多值圖像被分割成連通量形式後,對每個單獨區域計算統計量,面積,周長,質心,二階矩,可用於區域排序和區域匹配。

          傅里葉變換用於對濾波器的頻域特徵進行分析,FFT能快速實現大尺度核的卷積。

          思想:為了分析濾波器的頻率特徵,將一個已知頻率的正弦波通過濾波器,觀察正弦波變弱的程度。傅里葉變換可認為是輸入信號為正弦信號s(x),經過濾波器h(x)後,產生的輸出響應為正弦信號o(x)=s(x)*h(x),即兩者的卷積。傅里葉變換是對每個頻率的幅度和相位響應的簡單羅列。傅里葉變換不僅可以用於濾波器,還能用於信號和圖像。

          傅里葉變換的性質:疊加,平移,反向,卷積,相關,乘,微分,定義域縮放,實值圖像,Parseval定理。

      4.1 傅里葉變換對

      常見的傅里葉變換對,連續的和離散的。方便進行傅里葉變換。

        高頻成分將在降采樣中導致混疊。

      4.2 二維傅里葉變換

        為了對二維圖像及濾波器進行處理,提出了二維傅里葉變換,與一維傅里葉變換類似,只不過用向量代替標量,用向量內積代替乘法。

        4.3 維納濾波器

        傅里葉變換還可用於分析一類圖像整體的頻譜,維納濾波器應運而生。假定這類圖像位於隨機雜訊場中,每個頻率的期望幅度通過功率譜給出,信號功率譜捕獲了空間統計量的一階描述。維納濾波器適用於去除功率譜為P的圖像雜訊的濾波器。

        維納濾波器的性質,對於低頻具有 單位增益,對於高頻,具有減弱的效果。

        離散餘弦變換(DCT)常用於處理以塊為單位的圖像壓縮,它的計算方法是將以N為寬度的塊內的像素與一系列不同頻率的餘弦值進行點積來實現。

        DCT變換的實質是對自然圖像中一些小的區域的最優KL分解(PCA主成分分析的近似),KL能有效對信號去相關。

        小波演算法和DCT交疊變種能有效去除區塊效應。

        4.4 應用:銳化,模糊,去噪

          銳化和去雜訊能有效增強圖像,傳統的方法是採用線性濾波運算元,現在廣泛採用非線性濾波運算元,例如加權中值和雙邊濾波器,各向異性擴散和非局部均值,以及變分方法。

          度量圖像去噪演算法效果時,一般採用峰值信噪比(PNSR),結構相似性(SSIM)索引。

        迄今為止所研究的圖像變換輸出圖像大小均等於輸入圖像的大小,為了對不同解析度的圖像進行處理,比如,對小圖像進行插值使其與電腦的解析度相匹配,或者減小圖像的大小來加速演算法的執行或節省存儲空間和傳輸時間。

        由於不知道處理圖像所需的解析度,故由多幅不同的圖像構建圖像金字塔,從而進行多尺度的識別和編輯操作。改變圖像解析度較好的濾波器是插值濾波器和降采樣濾波器。

      5.1 插值

        為將圖像變大到較高解析度,需要用插值核來卷積圖像,二次插值常用方法是雙線性插值,雙三次插值,窗函數。窗函數被認為是品質最高的插值器,因為它既可以保留低解析度圖像中的細節,又可以避免混疊。

        5.2 降采樣

        降采樣是為了降低圖像解析度,先用低通濾波器卷積圖像,避免混疊,再保持第r個樣例。常用的降采樣濾波器有線性濾波器,二次濾波器,三次濾波器,窗餘弦濾波器,QMF-9濾波器,JPEG2000濾波器。

        5.3 多解析度表示

        通過降采樣和插值演算法,能夠對圖像建立完整的圖像金字塔,金字塔可以加速由粗到精的搜索演算法,以便在不同的尺度上尋找物體和模式,或進行多解析度融合操作。

        計算機視覺中最有名的金字塔是拉普拉斯金字塔,採用大小為2因子對原圖像進行模糊和二次采樣,並將它存儲在金字塔的下一級。

      5.4 小波變換

        小波是在空間域和頻率域都定位一個信號的濾波器,並且是在不同層次的尺度上定義的。小波可以進行多尺度有向濾波和去噪。與常規的金字塔相比,小波具有更好的方向選擇性,並提供了緊致框架。

        提升小波被稱為第二代小波,很容易適應非常規采樣拓撲,還有導向可移位多尺度變換,它們的表述不僅是過完備的,而且是方向選擇的。

      5.5 應用:圖像融合

        拉普拉斯金字塔的應用,混合合成圖像。要產生混合圖像,每個原圖像先分解成它自己的拉普拉斯金字塔,之後每個帶被乘以一個大小正比於金字塔級別的平滑加權函數 。最簡單的方法是建立一個二值掩膜圖像,根據此圖像產生一個高斯金字塔,再將拉普拉斯金字塔和高斯掩膜,這兩個帶權金字塔的和產生最終圖像。

        相對於點操作改變了圖像的值域范圍,幾何變換關注於改變圖像的定義域。原先採用的方法是全局參數化2D變換,之後的注意力將轉向基於網格的局部變形等更多通用變形。

        6.1 參數變換

        參數化變換對整幅圖像進行全局變換,其中變換的行為由少量的參數控制,反向卷繞或反向映射的性能優於前向卷繞,主要在於其能夠避免空洞和非整數位置重采樣的問題。而且可以用高質量的濾波器來控制混疊。

        圖像卷繞問題可形式化為給定一個從目標像素x'到原像素x的映射來重采樣一副原圖像。類似的反向法應用場合有光流法預測光流以及矯正透鏡的徑向畸變。

        重采樣過程的插值濾波器有,二次插值,三次插值,窗插值,二次插值追求速度,三次插值和窗插值追求視覺品質。

        MIP映射是一種紋理映射的快速預濾波圖像工具。   

        MIP圖是標準的圖像金字塔,每層用一個高質量的濾波器濾波而不是低質量的近似,重采樣時,需要預估重采樣率r。

        橢圓帶權平均濾波器(EWA),各向異性濾波,多通變換。

        有向二位濾波和重采樣操作可以用一系列一維重采樣和剪切變換來近似,使用一系列一維變換的優點是它們比大的,不可分離的二位濾波核更有效。

        6.2 基於網格扭曲

            為了獲得更自由的局部變形,產生了網格卷繞。稀疏控制點,稠密集,有向直線分割,位移場的確定。

        6.3 應用:基於特徵的形態學

            卷繞常用於改變單幅圖像的外觀以形成動畫,也可用於多幅圖像的融合以產生強大的變形效果,在兩幅圖像之間進行簡單的漸隱漸顯會導致鬼影,但採用圖像卷繞建立了良好的對應關系,相應的特徵便會對齊。

        用一些優化准則明確表達想要變換的目標,再找到或推斷出這個准則的解決辦法。正則化和變分法,構建一個描述解特性的連續全局能量函數,然後用稀疏線性系統或相關迭代方法找到最小能量解,貝葉斯統計學對產生輸入圖像的有雜訊的測量過程和關於解空間的先驗假設進行建模,通常用馬爾科夫隨機場進行編碼。常見示例有散列數據的表面插值,圖像去噪和缺失區域恢復,將圖像分為前景和背景區域。

      7.1 正則化

        正則化理論試圖用模型來擬合嚴重欠約束解空間的數據。即用一個平滑的表面穿過或是靠近一個測量數據點集合的問題。這樣的問題是病態的和不適定的。這樣由采樣數據點d(xi,yi)恢復完整圖像f(x,y)的問題被稱為逆問題。

        為了定義平滑解,常在解空間上定義一個范數,對於一維函數,函數一階導數的平方進行積分,或對函數二階導數的平方進行積分,這種能量度量是泛函的樣例,是將函數映射到標量值的運算元,這種方法被稱為變分法,用於度量函數的變化(非平滑性)。

        7.2 馬爾科夫隨機場

        7.3 應用:圖像復原

❷ 幾種常見物流選址模型的優劣和發展

1、連續型選址模型

連續模型認為設施的地點可在平面上取任意點, 較為典型的研究方法是和用重心法解決歐式距離選址問題。這個方法的優點是不限於在特定的備選地點進行選擇, 靈活性較大。但由於自由度較大、城市的地理條件限制, 因此, 選出的地址很可能是無法實現的地點;同時將線路考慮為直線也是不符合實際的。魯曉春對重心法選址作了深入的研究, 認為原有重心法存在問題, 並用流通費用偏微分方程來取代原有的計算公式。

由於重心法選址具有演算法簡單、應用靈活的特點, 人們將重心法與其它方法相結合, 並將其引入到多目標組合優化問題中, 但都只針對單一設施選址問題。其中, Point-Objective問題、連續型多目標( min-sum)選址問題、網路多目標中位數選址問題等被認為是最具代表性的研究。後來, 連續模型的擴展模型針對是多個設施的選址問題, 稱其為多源Weber問題, 該問題是個NP難題。Rosing提出了求解該問題的精確演算法, Goldengorin提出了求解該問題的啟發式演算法, 上述擴展模型只針對單一設施選址問題。對於選擇兩個設施的特例, Brimberg和Chen對該模型進行了進一步的研究和分析, 並提供相應的啟發式演算法。

2、離散型選址模型

這類方法認為配送中心的備選地點是有限的幾個場所, 最合適的地點只能從中選出, 經典的方法有Kuehn-Hamburger模型法、鮑姆爾沃爾夫法、混合整數規劃法、CFLP法(Capacitatied Facility Location Problem)和P-中值問題。

鮑姆爾沃爾夫法的優點是:將中心的可變費用表為凹函數, 可估計選定的配送中心流量, 提供的啟發式演算法較為簡單易行。不足:沒考慮配送中心的固定費用及容量限制, 可能造成選定的中心個數過多(或過少) 。

為彌補其缺陷, 又建立混合整數規劃模型, 將中心的固定費用、經營管理費用、運輸費用和庫存費列入目標函數, 將容量限制及中心個數限制列入約束條件。不足:將可變費用改為按線性關系處理, 這種倒退主要來自求解的考慮, 但求解此模型的計算量仍很大。由於變數和約束條件眾多、形式復雜, 一般用啟發式演算法求解。

設計使用法求解, 用組合進化方法求解該類問題。上述求解都是基於這兩個基本假設:一是主要考慮運輸費用;二

是不存在競爭對手。提出了九個基本的選址模型, 包括簡單選址模型、有容量限制的選址模型、需求變動的選址模型、動態選址模型等, 目標函數是使運輸費用和固定選址投資費用最小。除考慮了選址的固定費用、運輸費用外, 還考慮了庫存費用;用分解演算法進行了求解。考慮了非線性運輸費用的選址問題, 用分枝定界法求解。採用雙層規劃求解運輸網路中公共物流轉運站點的選址。魏巧雲考慮運輸成本和運營可變成本, 建立了多個配送中心的選址模型。盧安文建立了緊急情況下的配送模型, 以時間、費用為優化目標。劉海燕在分析了系統中庫存管理、運輸、配送中心之間的聯系後,用最優化方法構建了選址模型。對進行一個較為全面的研究, 展示了以前的研究所沒有考慮的一些問題, 如多商品問題等。研究的問題在結構上是兩級的, 包括多個工廠、倉庫和目的地。上述研究不足之處:均沒有考慮設施的固定運行成本的問題。

P-中值問題是指在一個給定數量和位置的需求集合和一個候選設施位置的集合下, 分別為個設施找到合適的位置, 並指派每個需求點到一個特定的設施, 使之達到在設施和需求點之間的運費最低。研究基於歐式距離的中值問題。提出了使用禁忌搜索和可變鄰域搜索方法來求解中值模型的啟發式演算法。尹傳忠提出了使用局部搜索和可變鄰域搜索方法來求解中值模型的啟發式演算法。提出了運用詞典區域局部搜索法求解中值問題。用模擬退火演算法、用遺傳演算法求解中值問題。

離散型選址問題的目標函數涉及到運輸(交通成本)、投資成本(建設成本)、客戶服務水平(在特定時間、距離為客戶提供服務)、設施能力利用率等兩個及以上的目標優化時, 就是所謂的多目標規劃選址問題。與單目標選址問題比較, 多目標選址問題的求解更加困難。提出的應用整數目標規劃來求解多目標選址問題。與對多目標問題的處理方法是將一個主要目標作為總目標, 將要實現的目標作為限制條件來將它轉化為單目標規劃問題。通過對對稱解的研究, 解決離散型多目標選址問題。

3、動態模型

動態選址模型是解決如何在需求和成本變化的跨時間周期的規劃期內對設施進行選址, 使得總的長期成本最小的問題。通過以下幾種方法可以找到隨時間變化的最優布局:

可以使用現期條件和未來某年的預期情況, 找出倉庫最佳位置。

認為設施地點配置不能長期保證最優, 提出隨時間變化的動態選址模型。研究多個設施在分階段時期選址分配的問題, 並應用動態規劃法來解決該問題。孫會君對新增配送中心如何進行有效的選址決策問題進行了研究, 並給出了求解的迭代演算法。

( )可以找到一個隨時間變化的最優布局變化軌跡, 精確地反映什麼時候需要轉換成新布局, 應該轉換成什麼樣的布局。考慮了選址問題的動態特性和需求的隨機變動性, 建立動態選址模型和隨機選址模型。根據實際問題的特點, 建立了一個考慮時間因素的動態選址的基本模型。

( )找出目前最優網路布局, 並進行實施;隨後, 利用未來的數據,找出新的最優布局。研究了在整個規劃期內, 建立新的設施而原有的設施可以被關閉。模型考慮資金的時間價值, 目標函數是整個規劃期內的成本最小。

5、隨機模型

隨機模型其研究方法主要分為兩類:概率方法和情景計劃方法, 這兩種方法的系統輸入參數都是不確定性的。

對隨機的個中點問題和無能力限制的選址問題進行了研究, 模型中時間、距離、供應和需求為隨機變數。袁慶達建立了優化區域公共物流中心規模和選址問題的二級非線性規劃模型, 並設計了遺傳模擬退火演算法求解。先研究了行程時間狀態隨馬爾可夫狀態轉移矩陣變化的多個設施選址問題, 後又擴展到需求服從均勻分布時的最大最小和最小最大選址問題。和在網路節點需求和行程時間都是不確定的情況下, 建立了目標函數為服務最小、需求最大的隨機情景問題模型。楊波提出了一個隨機化的模型, 給出單個配送中心選址問題的一個量化的處理方法。

選址分配問題的定性研究這類方法是將專家憑經驗、專業知識做出的判斷以數值形式表示, 再經過綜合分析後對選址進行決策。首先, 根據影響物流設施選址的因素, 建立備選方案的評價指標體系;然後, 採用一定的評價方法(如:偏好理論、權重因素分析方法、專家評分法、層次分析法、模糊層次分析法、模糊綜合評判法、或者模糊多准則決策方法等)得到所需的評價指標的權重;最後, 通過求出各備選方案的優劣排序, 得到最優方案。

和用偏好理論將所有主觀因素兩兩比較從而為主觀因素賦予了權重值。和提出了一種權重因素分析方法將定量的數據和定性的評價值相結合, 在多個備選項中選擇合適的地址。先建立層次結構評價模型, 再用層次分析法確定配送中心最優位置。陸琳琳引入模糊評價方法, 全面考慮選址過程中的各項因素, 使選址評價更客觀、合理。提出模糊多准則決策方法, 用於解決模糊環境下的配送中心選址問題。

值得注意的是, 在應用定性評價時有兩個關鍵環節, 其中首要環節是評價指標體系的設計;其次是評價指標的量化。無論是定性還是定量, 評價指標的隸屬度的量化都要科學合理。一方面, 要採取定性與定量分析相結合的方法准確地進行評價指標隸屬度的刻畫, 另一方面, 要注意不同評價指標的隸屬度在量級上的一致性與可比性。

在綜合考慮各種影響因素的基礎上, 對影響選址的因素劃分為兩層指標體系;構建出包括自然條件、經濟因素、投資環境情況與其他因素個一級指標和個二級指標。通過真實的案例對軍事物流系統的選址進行了研究, 劃分為兩層指標體系;包括氣候、地質、軍事、經濟和基礎設施個一級指標和個二級指標。

採用模糊定量的方法, 對轉運型的國際配送中心進行評價, 構建出包括內在因素和外在因素個一級指標和個二級指標的兩層評價體系。傅新平結合物流中心的職能, 從經濟和社會效益兩個方面出發, 建立了個一級指標和個二級指標。吳迎學設計了多因素評價指標體系, 第一層次是物流環境、生產能力、經濟效益指標, 它們是決定物流中心設計方案優劣的主要因素;第二層次是對上述指標進一步評價而細分的因素集, 共計個二級指標。韓世蓮運用多准則模糊層次分析法進行配送中心選址的綜合評價與決策, 從自然環境、交通運輸、經營環境、地理條件和公共設施五個方面綜合考慮, 並建立了由三層共計條准則構成的評價指標體系。夏景虹設計了包括區位條件、交通設施、其他設施、建設條件和社會環境個一級指標和個二級指標。劉文歌用德爾斐法建立了配送中心選址方案評價指標體系, 採用成本型、效益型和區間型三個指標為級指標, 並設計了個二級指標。劉曉峰將經濟效益、社會效益及技術效能作為級指標, 又建立了個二級指標。

總體而言, 國內外相關研究對選址的評價指標主要考察社會效益、經濟效益以及技術效能個方面.

❸ 採用准確優化技術和啟發式優化技術解決一個問題會存在什麼不同

採用准確優化技術和啟發式優化技術解決一個問題會存在的不同之處:

①確定性演算法和隨機性演算法是目前求解優化問題的方法。隨機性演算法一般是對社會行為和自然現象的模擬,具有對優化函數的解析性質要求低的特點,甚至對無顯示解析表達式的問題也可以求解,能較好解決優化中的雜訊、不可微、高維等問題。

②啟發式演算法作為隨機性演算法的一種,其良好的應用更加快了人們對各種優化方法的探索腳步。 近些年來不斷有學者將分形應用於優化中來,試圖運用分形思想來處理復雜的優化問題。

③其中,分形演算法通過對可行域的分形分割來尋優,是一種新穎的確定性演算法,但其局限性較大,只適用於低維簡單的問題,對於當今社會中高維復雜問題則幾乎無能為力,也使得該演算法的影響力微乎其微。

④啟發式技術是基於特徵值掃描技術上的升級,與傳統反病毒特徵值掃描技術相比,優點在於對未知病毒的防禦.是特徵值識別技術質的飛躍。


(3)鄰域搜索演算法優點擴展閱讀

啟發式:簡化虛擬機和簡化行為判斷引擎的結合 Heuristic(啟發式技術=啟發式掃描+啟發式監控) 重點在於特徵值識別技術上的更新、解決單一特徵碼比對的缺陷.目的不在於檢測所有的未知病毒,只是對特徵值掃描技術的補充.主要針對:木馬、間諜、後門、下載者、已知病毒(PE病毒)的變種。

一、啟發式發展方向

現代啟發式演算法的研究,在理論方面還處於不斷發展中,新思想和新方法仍不斷出現。分析目前的現狀和發展方向,其發展方向有如下幾個方面:

①整理歸納分散的研究成果,建立統一的演算法體系結構。

②在現有的數學方法(模式定理、編碼策略、馬爾可夫鏈理論、維數分析理論、復制遺傳演算法理論、二次動力系統理論、傅立葉分析理論、分離函數理論、Walsh函數分析理論)的基礎上尋求新的數學工具。

③開發新的混合式演算法及開展現有演算法改進方面的研究。

④研究高效並行或分布式優化演算法。

二、啟發式演算法演算法機制特點

現代啟發式演算法在優化機制方面存在一定的差異,但在優化流程上卻具有較大的相似性,均是一種「鄰域搜索」結構。演算法都是從一個(一組)初始解出發,在演算法的關鍵參數的控制下通過鄰域函數產生若干鄰域解,按准則(確定性、概率性或混沌方式)更新當前狀態,而後按關鍵參數修改准則調整關鍵參數,一直優化到最優結果。

❹ 剩餘矩形填充演算法是優化演算法嗎

是,針對矩形件排樣問題提出的一種新的空白矩形填充優化演算法.
首先,設計空白矩形填充演算法時,提出了消除多餘空白矩形的方法,以減小計算時間復雜度.其次,利用鄰域搜索演算法優化矩形件排放順序,通過挖掘矩形件排樣的問題特徵,設計了受限距離的交叉和插入兩種鄰域運算元,並提出了特殊運算元執行點選擇策略.然後,設計了基於兩種鄰域運算元交替迭代的鄰域搜索演算法.最後,對文獻中的21個經典案例進行試驗計算,4個案例的排樣利用率達到了100%,絕大多數案例的排樣利用率超過了99%,最小排樣利用率超過了98%.將其他常用演算法和文獻中演算法進行比較,驗證了本文演算法的有效性

❺ pso的演算法結構

對微粒群演算法結構的改進方案有很多種,對其可分類為:採用多個子種群;改進微粒學習對象的選取策略;修改微粒更新迭代公式;修改速度更新策略;修改速度限制方法、位置限制方法和動態確定搜索空間;與其他搜索技術相結合;以及針對多模問題所作的改進。
第一類方案是採用多個子種群。柯晶考慮優化問題對收斂速度和尋優精度的雙重要求並借鑒多群體進化演算法的思想,將尋優微粒分成兩組,一組微粒採用壓縮因子的局部模式PSO演算法,另一組微粒採用慣性權重的全局模式PSO演算法,兩組微粒之間採用環形拓撲結構。對於高維優化問題,PSO演算法需要的微粒個數很多,導致計算復雜度常常很高,並且很難得到好的解。因此,出現了一種協作微粒群演算法(Cooperative ParticleSwarm Optimizer, CPSO-H),將輸入向量拆分成多個子向量,並對每個子向量使用一個微粒群來進行優化。雖然CPSO-H演算法使用一維群體來分別搜索每一維,但是這些搜索結果被一個全局群體集成起來之後,在多模問題上的性能與原始PSO演算法相比有很大的改進。Chow使用多個互相交互的子群,並引入相鄰群參考速度。馮奇峰提出將搜索區域分區,使用多個子群並通過微粒間的距離來保持多樣性。陳國初將微粒分成飛行方向不同的兩個分群,其中一分群朝最優微粒飛行,另一分群微粒朝相反方向飛行;飛行時,每一微粒不僅受到微粒本身飛行經驗和本分群最優微粒的影響,還受到全群最優微粒的影響。Niu在PSO演算法中引入主—從子群模式,提出一種多種群協作PSO演算法。Seo提出一種多組PSO演算法(Multigrouped PSO),使用N組微粒來同時搜索多模問題的N個峰。Selleri使用多個獨立的子群,在微粒速度的更新方程中添加了一些新項,分別使得微粒向子群歷史最優位置運動,或者遠離其他子群的重心。王俊年借鑒遞階編碼的思想,構造出一種多種群協同進化PSO演算法。高鷹借鑒生態學中環境和種群競爭的關系,提出一種基於種群密度的多種群PSO演算法。
第二類方案是改進微粒學習對象的選取策略。Al-kazemi提出多階段PSO演算法,將微粒按不同階段的臨時搜索目標分組,這些臨時目標允許微粒向著或背著它自己或全局最好位置移動。Ting對每個微粒的pBest進行操作,每一維從其他隨機確定的維度學習,之後如果新的pBest更好則替換原pBest;該文還比較了多種不同學習方式對應的PSO演算法的性能。Liang提出一種新穎的學習策略CLPSO,利用所有其他微粒的歷史最優信息來更新微粒的速度;每個微粒可以向不同的微粒學習,並且微粒的每一維可以向不同的微粒學習。該策略能夠保持群體的多樣性,防止早熟收斂,可以提高PSO演算法在多模問題上的性能;通過實驗將該演算法與其它幾種PSO演算法的變種進行比較,實驗結果表明該演算法在解決多模復雜問題時效果很好。Zhao在PSO演算法中使用適應值最好的n個值來代替速度更新公式中的gBest。Abdelbar提出一種模糊度量,從而使得每個鄰域中有多個適應值最好的微粒可以影響其它微粒。Wang也採用多個適應值最好的微粒信息來更新微粒速度,並提出一種模糊規則來自適應地確定參數。崔志華提出一種動態調整的改進PSO演算法,在運行過程中動態調整極限位置,使得每個微粒的極限位置在其所經歷的最好位置與整體最好位置所形成的動態圓中分布。與原始PSO演算法相反,有一類方法是遠離最差位置而非飛向最優位置。Yang提出在演算法中記錄最差位置而非最優位置,所有微粒都遠離這些最差位置。與此類似,Leontitsis在微粒群演算法中引入排斥子的概念,在使用個體最優位置和群體最優位置信息的同時,在演算法中記錄當前的個體最差位置和群體最差位置,並利用它們將微粒排斥到最優位置,從而讓微粒群更快地到達最優位置。孟建良提出一種改進的PSO演算法,在進化的初期,微粒以較大的概率向種群中其他微粒的個體最優學習;在進化後期,微粒以較大的概率向當前全局最優個體學習。Yang在PSO演算法中引入輪盤選擇技術來確定gBest,使得所有個體在進化早期都有機會引領搜索方向,從而避免早熟。
第三類方案是修改微粒更新公式。Hendtlass在速度更新方程中給每個微粒添加了記憶能力。He在速度更新方程中引入被動聚集機制。曾建潮通過對PSO演算法的速度進化迭代方程進行修正,提出一種保證全局收斂的隨機PSO演算法。Zeng在PSO演算法中引入加速度項,使得PSO演算法從一個二階隨機系統變為一個三階隨機系統,並使用PID控制器來控制演算法的演化。為了改進PSO演算法的全局搜索能力,Ho提出一種新的微粒速度和位置更新公式,並引入壽命(Age)變數。
第四類方案是修改速度更新策略。Liu認為過於頻繁的速度更新會弱化微粒的局部開采能力並減慢收斂,因此提出一種鬆弛速度更新(RVU)策略,僅當微粒使用原速度不能進一步提高適應值時才更新速度,並通過試驗證明該策略可以大大減小計算量並加速收斂。羅建宏對同步模式和非同步模式的PSO演算法進行了對比研究,試驗結果表明非同步模式收斂速度顯著提高,同時尋優效果更好。Yang在微粒的更新規則中引入感情心理模型。Liu採用一個最小速度閾值來控制微粒的速度,並使用一個模糊邏輯控制器來自適應地調節該最小速度閾值。張利彪提出了對PSO演算法增加更新概率,對一定比例的微粒並不按照原更新公式更新,而是再次隨機初始化。Dioan利用遺傳演算法(GA)來演化PSO演算法的結構,即微粒群中各微粒更新的順序和頻率。
第五類方案是修改速度限制方法、位置限制方法和動態確定搜索空間。Stacey提出一種重新隨機化速度的速度限制和一種重新隨機化位置的位置限制。Liu在[76]的基礎上,在PSO演算法中引入動量因子,來將微粒位置限制在可行范圍內。陳炳瑞提出一種根據微粒群的最佳適應值動態壓縮微粒群的搜索空間與微粒群飛行速度范圍的改進PSO演算法。
第六類方案是通過將PSO演算法與一些其他的搜索技術進行結合來提高PSO演算法的性能,主要目的有二,其一是提高種群多樣性,避免早熟;其二是提高演算法局部搜索能力。這些混合演算法包括將各種遺傳運算元如選擇、交叉、變異引入PSO演算法,來增加種群的多樣性並提高逃離局部最小的能力。Krink通過解決微粒間的沖突和聚集來增強種群多樣性,提出一種空間擴展PSO演算法(Spatial ExtensionPSO,SEPSO);但是SEPSO演算法的參數比較難以調節,為此Monson提出一種自適應調節參數的方法。用以提高種群多樣性的其他方法或模型還包括「吸引—排斥」、捕食—被捕食模型、耗散模型、自組織模型、生命周期模型(LifeCycle model)、貝葉斯優化模型、避免沖突機制、擁擠迴避(Crowd Avoidance)、層次化公平競爭(HFC)、外部記憶、梯度下降技術、線性搜索、單純形法運算元、爬山法、勞動分工、主成分分析技術、卡爾曼濾波、遺傳演算法、隨機搜索演算法、模擬退火、禁忌搜索、蟻群演算法(ACO)、人工免疫演算法、混沌演算法、微分演化、遺傳規劃等。還有人將PSO演算法在量子空間進行了擴展。Zhao將多主體系統(MAS)與PSO演算法集成起來,提出MAPSO演算法。Medasani借鑒概率C均值和概率論中的思想對PSO演算法進行擴展,提出一種概率PSO演算法,讓演算法分勘探和開發兩個階段運行。
第七類方案專門針對多模問題,希望能夠找到多個較優解。為了能使PSO演算法一次獲得待優化問題的多個較優解,Parsopoulos使用了偏轉(Deflection)、拉伸(Stretching)和排斥(Repulsion)等技術,通過防止微粒運動到之前已經發現的最小區域,來找到盡可能多的最小點。但是這種方法會在檢測到的局部最優點兩端產生一些新的局部最優點,可能會導致優化演算法陷入這些局部最小點。為此,Jin提出一種新的函數變換形式,可以避免該缺點。基於類似思想,熊勇提出一種旋轉曲面變換方法。
保持種群多樣性最簡單的方法,是在多樣性過小的時候,重置某些微粒或整個微粒群。Lvbjerg在PSO演算法中採用自組織臨界性作為一種度量,來描述微粒群中微粒相互之間的接近程度,來確定是否需要重新初始化微粒的位置。Clerc提出了一種「Re-Hope」方法,當搜索空間變得相當小但是仍未找到解時(No-Hope),重置微粒群。Fu提出一種帶C-Pg變異的PSO演算法,微粒按照一定概率飛向擾動點而非Pg。赫然提出了一種自適應逃逸微粒群演算法,限制微粒在搜索空間內的飛行速度並給出速度的自適應策略。
另一種變種是小生境PSO演算法,同時使用多個子種群來定位和跟蹤多個最優解。Brits還研究了一種通過調整適應值計算方式的方法來同時找到多個最優解。Li在PSO演算法中引入適應值共享技術來求解多模問題。Zhang在PSO演算法中採用順序生境(SequentialNiching)技術。在小生境PSO演算法的基礎上,還可以使用向量點積運算來確定各個小生境中的候選解及其邊界,並使該過程並行化,以獲得更好的結果。但是,各種小生境PSO演算法存在一個共同的問題,即需要確定一個小生境半徑,且演算法性能對該參數很敏感。為解決該問題,Bird提出一種自適應確定niching參數的方法。
Hendtlass在PSO演算法中引入短程力的概念,並基於此提出一種WoSP演算法,可以同時確定多個最優點。劉宇提出一種多模態PSO演算法,用聚類演算法對微粒進行聚類,動態地將種群劃分成幾個類,並且使用微粒所屬類的最優微粒而非整個種群的最好微粒來更新微粒的速度,從而可以同時得到多個近似最優解。Li在PSO演算法中引入物種的概念,但是由於其使用的物種間距是固定的,該方法只適用於均勻分布的多模問題;為此,Yuan對該演算法進行擴展,採用多尺度搜索方法對物種間距加以自適應的調整。
此外,也有研究者將PSO演算法的思想引入其他演算法中,如將PSO演算法中微粒的運動規則嵌入到進化規劃中,用PSO演算法中的運動規則來替代演化演算法中交叉運算元的功能。

❻ 鄰域的定義是唯一的嗎鄰域的定義與搜索效率及結 果有關聯嗎簡要說明你的結

不是。有關聯。
鄰域:鄰域是指集合上的一種基礎的拓撲結構。在集合論中,它是以點a為中心的任何開區間,記作:U(a)。在拓撲學和相關的數學領域中,鄰域是拓撲空間中的基本概念。有鄰域公理(鄰域公理是現代數學拓撲結構的基礎概念)、開鄰域和閉鄰域、去心鄰域等相關研究的著作。
廣義鄰域搜索演算法的統一結構:
1.對優化過程作兩方面分解處理:方面1、基於優化空間的分層(原問題分解為子問題求解,最後將各子問題的解逆向綜合為原問題的解)方面2、基於優化進程的分層(進程層次分為若干階段,各階段採用不同的搜索演算法或鄰域函數進行優化)目前混合演算法的結構類型主要可歸納為串列、鑲嵌、並行及混合結構。
串列結構。
鑲嵌結構。
並行結構(又分為同步式並行、非同步式並行、網路結構)。
同步式:各子演算法相對獨立但與主過程的通訊必須同步。
非同步式:子演算法與主過程的通訊不受其他子演算法的限制。
網路結構:各演算法分別在獨立的存儲器上執行獨立的搜索,演算法間的通信是通過網路相互傳遞的。

❼ 什麼是局部搜索演算法

局部搜索演算法是從爬山法改進而來的。
簡單來說,局部搜索演算法是一種簡單的貪心搜索演算法,該演算法每次從當前解的臨近解空間中選擇一個最優解作為當前解,直到達到一個局部最優解。
在計算機科學中,局部搜索是解決最優化問題的一種元啟發式演算法。局部搜索從一個初始解出發,然後搜索解的鄰域,如有更優的解則移動至該解並繼續執行搜索,否則返回當前解。
1、局部搜索演算法的基本思想:
在搜索過程中,始終選擇當前點的鄰居中與離目標最近者的方向搜索。
2、局部搜索的優點:
簡單、靈活及易於實現,缺點是容易陷入局部最優且解的質量與初始解和鄰域的結構密切相關。常見的改進方法有模擬退火、禁忌搜索等。
3、局部搜索廣泛應用:
計算機科學(主要是人工智慧)、數學、運籌學、工程學、生物信息學中各種很難找到全局最優解的計算問題。

❽ 智能演算法的演算法分類

模擬退火演算法的依據是固體物質退火過程和組合優化問題之間的相似性。物質在加熱的時候,粒子間的布朗運動增強,到達一定強度後,固體物質轉化為液態,這個時候再進行退火,粒子熱運動減弱,並逐漸趨於有序,最後達到穩定。
模擬退火的解不再像局部搜索那樣最後的結果依賴初始點。它引入了一個接受概率p。如果新的點(設為pn)的目標函數f(pn)更好,則p=1,表示選取新點;否則,接受概率p是當前點(設為pc)的目標函數f(pc),新點的目標函數f(pn)以及另一個控制參數「溫度」T的函數。也就是說,模擬退火沒有像局部搜索那樣每次都貪婪地尋找比現在好的點,目標函數差一點的點也有可能接受進來。隨著演算法的執行,系統溫度T逐漸降低,最後終止於某個低溫,在該溫度下,系統不再接受變化。
模擬退火的典型特徵是除了接受目標函數的改進外,還接受一個衰減極限,當T較大時,接受較大的衰減,當T逐漸變小時,接受較小的衰減,當T為0時,就不再接受衰減。這一特徵意味著模擬退火與局部搜索相反,它能避開局部極小,並且還保持了局部搜索的通用性和簡單性。
在物理上,先加熱,讓分子間互相碰撞,變成無序狀態,內能加大,然後降溫,最後的分子次序反而會更有序,內能比沒有加熱前更小。就像那隻兔子,它喝醉後,對比較近的山峰視而不見,迷迷糊糊地跳一大圈子,反而更有可能找到珠峰。
值得注意的是,當T為0時,模擬退火就成為局部搜索的一個特例。
模擬退火的偽碼表達:
procere simulated annealing
begin
t:=0;
initialize temperature T
select a current string vc at random;
evaluate vc;
repeat
repeat
select a new string vn in the neighborhood of vc; (1)
if f(vc)<f(vn)
then vc:=vn;
else if random [0,1] <exp ((f (vn)-f (vc))/T) (2)
then vc:=vn;
until (termination-condition) (3)
T:=g(T,t); (4)
T:=t+1;
until (stop-criterion) (5)
end;
上面的程序中,關鍵的是(1)新狀態產生函數,(2)新狀態接受函數,(3)抽樣穩定準則,(4)退溫函數,(5)退火結束准則(簡稱三函數兩准則)是直接影響優化結果的主要環節。雖然實驗結果證明初始值對於最後的結果沒有影響,但是初溫越高,得到高質量解的概率越大。所以,應該盡量選取比較高的初溫。
上面關鍵環節的選取策略:
(1)狀態產生函數:候選解由當前解的鄰域函數決定,可以取互換,插入,逆序等操作產生,然後根據概率分布方式選取新的解,概率可以取均勻分布、正態分布、高斯分布、柯西分布等。
(2)狀態接受函數:這個環節最關鍵,但是,實驗表明,何種接受函數對於最後結果影響不大。所以,一般選取min [1, exp ((f (vn)-f (vc))/T)]。
(3)抽樣穩定準則:一般常用的有:檢驗目標函數的均值是否穩定;連續若干步的目標值變化較小;規定一定的步數;
(4)退溫函數:如果要求溫度必須按照一定的比率下降,SA演算法可以採用,但是溫度下降很慢;快速SA中,一般採用 。目前,經常用的是 ,是一個不斷變化的值。
(5)退火結束准則:一般有:設置終止溫度;設置迭代次數;搜索到的最優值連續多次保持不變;檢驗系統熵是否穩定。
為了保證有比較優的解,演算法往往採取慢降溫、多抽樣、以及把「終止溫度」設的比較低等方式,導致演算法運行時間比較長,這也是模擬退火的最大缺點。人喝醉了酒辦起事來都不利索,何況兔子? 「物競天擇,適者生存」,是進化論的基本思想。遺傳演算法就是模擬自然界想做的事。遺傳演算法可以很好地用於優化問題,若把它看作對自然過程高度理想化的模擬,更能顯出它本身的優雅——雖然生存競爭是殘酷的。
遺傳演算法以一種群體中的所有個體為對象,並利用隨機化技術指導對一個被編碼的參數空間進行高效搜索。其中,選擇、交叉和變異構成了遺傳演算法的遺傳操作;參數編碼、初始群體的設定、適應度函數的設計、遺傳操作設計、控制參數設定五個要素組成了遺傳演算法的核心內容。作為一種新的全局優化搜索演算法,遺傳演算法以其簡單通用、健壯性強、適於並行處理以及高效、實用等顯著特點,在各個領域得到了廣泛應用,取得了良好效果,並逐漸成為重要的智能演算法之一。
遺傳演算法的偽碼:
procere genetic algorithm
begin
initialize a group and evaluate the fitness value ; (1)
while not convergent (2)
begin
select; (3)
if random[0,1]<pc then
crossover; (4)
if random (0,1)<pm then
mutation; (5)
end;
end
上述程序中有五個重要的環節:
(1)編碼和初始群體的生成:GA在進行搜索之前先將解空間的解數據表示成遺傳空間的基因型串結構數據,這些串結構數據的不同組合便構成了不同的點。然後隨機產生N個初始串結構數據,每個串結構數據稱為一個個體, N個體構成了一個群體。GA以這N個串結構數據作為初始點開始迭代。
比如,旅行商問題中,可以把商人走過的路徑進行編碼,也可以對整個圖矩陣進行編碼。編碼方式依賴於問題怎樣描述比較好解決。初始群體也應該選取適當,如果選取的過小則雜交優勢不明顯,演算法性能很差(數量上佔了優勢的老鼠進化能力比老虎強),群體選取太大則計算量太大。
(2)檢查演算法收斂准則是否滿足,控制演算法是否結束。可以採用判斷與最優解的適配度或者定一個迭代次數來達到。
(3)適應性值評估檢測和選擇:適應性函數表明個體或解的優劣性,在程序的開始也應該評價適應性,以便和以後的做比較。不同的問題,適應性函數的定義方式也不同。根據適應性的好壞,進行選擇。選擇的目的是為了從當前群體中選出優良的個體,使它們有機會作為父代為下一代繁殖子孫。遺傳演算法通過選擇過程體現這一思想,進行選擇的原則是適應性強的個體為下一代貢獻一個或多個後代的概率大。選擇實現了達爾文的適者生存原則。
(4)雜交:按照雜交概率(pc)進行雜交。雜交操作是遺傳演算法中最主要的遺傳操作。通過雜交操作可以得到新一代個體,新個體組合了其父輩個體的特性。雜交體現了信息交換的思想。
可以選定一個點對染色體串進行互換,插入,逆序等雜交,也可以隨機選取幾個點雜交。雜交概率如果太大,種群更新快,但是高適應性的個體很容易被淹沒,概率小了搜索會停滯。
(5)變異:按照變異概率(pm)進行變異。變異首先在群體中隨機選擇一個個體,對於選中的個體以一定的概率隨機地改變串結構數據中某個串的值。同生物界一樣,GA中變異發生的概率很低。變異為新個體的產生提供了機會。
變異可以防止有效基因的缺損造成的進化停滯。比較低的變異概率就已經可以讓基因不斷變更,太大了會陷入隨機搜索。想一下,生物界每一代都和上一代差距很大,會是怎樣的可怕情形。
就像自然界的變異適和任何物種一樣,對變數進行了編碼的遺傳演算法沒有考慮函數本身是否可導,是否連續等性質,所以適用性很強;並且,它開始就對一個種群進行操作,隱含了並行性,也容易找到「全局最優解」。 為了找到「全局最優解」,就不應該執著於某一個特定的區域。局部搜索的缺點就是太貪婪地對某一個局部區域以及其鄰域搜索,導致一葉障目,不見泰山。禁忌搜索就是對於找到的一部分局部最優解,有意識地避開它(但不是完全隔絕),從而獲得更多的搜索區間。兔子們找到了泰山,它們之中的一隻就會留守在這里,其他的再去別的地方尋找。就這樣,一大圈後,把找到的幾個山峰一比較,珠穆朗瑪峰脫穎而出。
當兔子們再尋找的時候,一般地會有意識地避開泰山,因為他們知道,這里已經找過,並且有一隻兔子在那裡看著了。這就是禁忌搜索中「禁忌表(tabu list)」的含義。那隻留在泰山的兔子一般不會就安家在那裡了,它會在一定時間後重新回到找最高峰的大軍,因為這個時候已經有了許多新的消息,泰山畢竟也有一個不錯的高度,需要重新考慮,這個歸隊時間,在禁忌搜索裡面叫做「禁忌長度(tabu length)」;如果在搜索的過程中,留守泰山的兔子還沒有歸隊,但是找到的地方全是華北平原等比較低的地方,兔子們就不得不再次考慮選中泰山,也就是說,當一個有兔子留守的地方優越性太突出,超過了「best to far」的狀態,就可以不顧及有沒有兔子留守,都把這個地方考慮進來,這就叫「特赦准則(aspiration criterion)」。這三個概念是禁忌搜索和一般搜索准則最不同的地方,演算法的優化也關鍵在這里。
偽碼表達:
procere tabu search;
begin
initialize a string vc at random,clear up the tabu list;
cur:=vc;
repeat
select a new string vn in the neighborhood of vc;
if va>best_to_far then {va is a string in the tabu list}
begin
cur:=va;
let va take place of the oldest string in the tabu list;
best_to_far:=va;
end else
begin
cur:=vn;
let vn take place of the oldest string in the tabu list;
end;
until (termination-condition);
end;
以上程序中有關鍵的幾點:
(1)禁忌對象:可以選取當前的值(cur)作為禁忌對象放進tabu list,也可以把和當然值在同一「等高線」上的都放進tabu list。
(2)為了降低計算量,禁忌長度和禁忌表的集合不宜太大,但是禁忌長度太小容易循環搜索,禁忌表太小容易陷入「局部極優解」。
(3)上述程序段中對best_to_far的操作是直接賦值為最優的「解禁候選解」,但是有時候會出現沒有大於best_to_far的,候選解也全部被禁的「死鎖」狀態,這個時候,就應該對候選解中最佳的進行解禁,以能夠繼續下去。
(4)終止准則:和模擬退火,遺傳演算法差不多,常用的有:給定一個迭代步數;設定與估計的最優解的距離小於某個范圍時,就終止搜索;當與最優解的距離連續若干步保持不變時,終止搜索;
禁忌搜索是對人類思維過程本身的一種模擬,它通過對一些局部最優解的禁忌(也可以說是記憶)達到接納一部分較差解,從而跳出局部搜索的目的。 人工神經網路(Artificial Neural Network,ANN)
神經網路從名字就知道是對人腦的模擬。它的神經元結構,它的構成與作用方式都是在模仿人腦,但是也僅僅是粗糙的模仿,遠沒有達到完美的地步。和馮·諾依曼機不同,神經網路計算非數字,非精確,高度並行,並且有自學習功能。
生命科學中,神經細胞一般稱作神經元,它是整個神經結構的最基本單位。每個神經細胞就像一條胳膊,其中像手掌的地方含有細胞核,稱作細胞體,像手指的稱作樹突,是信息的輸入通路,像手臂的稱作軸突,是信息的輸出通路;神經元之間錯綜復雜地連在一起,互相之間傳遞信號,而傳遞的信號可以導致神經元電位的變化,一旦電位高出一定值,就會引起神經元的激發,此神經元就會通過軸突傳出電信號。
而如果要用計算機模仿生物神經,就需要人工的神經網路有三個要素:(1)形式定義人工神經元;(2)給出人工神經元的連接方式,或者說給出網路結構;(3)給出人工神經元之間信號強度的定義。
歷史上第一個人工神經網路模型稱作M-P模型,非常簡單:
其中,表示神經元i在t時刻的狀態,為1表示激發態,為0表示抑制態;是神經元i和j之間的連接強度;表示神經元i的閾值,超過這個值神經元才能激發。
這個模型是最簡單的神經元模型。但是功能已經非常強大:此模型的發明人McCulloch和Pitts已經證明,不考慮速度和實現的復雜性,它可以完成當前數字計算機的任何工作。
以上這個M-P模型僅僅是一層的網路,如果從對一個平面進行分割的方面來考慮的話,M-P網路只能把一個平面分成個半平面,卻不能夠選取特定的一部分。而解決的辦法就是「多層前向網路」。
為了讓這種網路有合適的權值,必須給網路一定的激勵,讓它自己學習,調整。一種方法稱作「向後傳播演算法(Back Propagation,BP)」,其基本思想是考察最後輸出解和理想解的差異,調整權值,並把這種調整從輸出層開始向後推演,經過中間層,達到輸入層。
可見,神經網路是通過學習來達到解決問題的目的,學習沒有改變單個神經元的結構和工作方式,單個神經元的特性和要解決的問題之間也沒有直接聯系,這里學習的作用是根據神經元之間激勵與抑制的關系,改變它們的作用強度。學習樣本中的任何樣品的信息都包含在網路的每個權值之中。
BP演算法中有考察輸出解和理想解差異的過程,假設差距為w,則調整權值的目的就是為了使得w最小化。這就又包含了前文所說的「最小值」問題。一般的BP演算法採用的是局部搜索,比如最速下降法,牛頓法等,當然如果想要得到全局最優解,可以採用模擬退火,遺傳演算法等。當前向網路採用模擬退火演算法作為學習方法的時候,一般成為「波爾茲曼網路」,屬於隨機性神經網路。
在學習BP演算法學習的過程中,需要已經有一部分確定的值作為理想輸出,這就好像中學生在學習的時候,有老師的監督。如果沒有了監督,人工神經網路該怎麼學習?
就像沒有了宏觀調控,自由的市場引入了競爭一樣,有一種學習方法稱作「無監督有競爭的學習」。在輸入神經元i的若干個神經元之間開展競爭,競爭之後,只有一個神經元為1,其他均為0,而對於失敗的神經元,調整使得向對競爭有利的方向移動,則最終也可能在一次競爭中勝利;
人工神經網路還有反饋網路如Hopfield網路,它的神經元的信號傳遞方向是雙向的,並且引入一個能量函數,通過神經元之間不斷地相互影響,能量函數值不斷下降,最後能給出一個能量比較低的解。這個思想和模擬退火差不多。
人工神經網路應用到演算法上時,其正確率和速度與軟體的實現聯系不大,關鍵的是它自身的不斷學習。這種思想已經和馮·諾依曼模型很不一樣。 粒子群優化演算法(PSO)是一種進化計算技術(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源於對鳥群捕食的行為研究 。該演算法最初是受到飛鳥集群活動的規律性啟發,進而利用群體智能建立的一個簡化模型。粒子群演算法在對動物集群活動行為觀察基礎上,利用群體中的個體對信息的共享使整個群體的運動在問題求解空間中產生從無序到有序的演化過程,從而獲得最優解。
PSO同遺傳演算法類似,是一種基於迭代的優化演算法。系統初始化為一組隨機解,通過迭代搜尋最優值。但是它沒有遺傳演算法用的交叉(crossover)以及變異(mutation),而是粒子在解空間追隨最優的粒子進行搜索。同遺傳演算法比較,PSO的優勢在於簡單容易實現並且沒有許多參數需要調整。目前已廣泛應用於函數優化,神經網路訓練,模糊系統控制以及其他遺傳演算法的應用領域。
PSO模擬鳥群的捕食行為。設想這樣一個場景:一群鳥在隨機搜索食物。在這個區域里只有一塊食物。所有的鳥都不知道食物在那裡。但是他們知道當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢。最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。
PSO從這種模型中得到啟示並用於解決優化問題。PSO中,每個優化問題的解都是搜索空間中的一隻鳥。我們稱之為「粒子」。所有的粒子都有一個由被優化的函數決定的適應值(fitness value),每個粒子還有一個速度決定他們飛翔的方向和距離。然後粒子們就追隨當前的最優粒子在解空間中搜索。
PSO 初始化為一群隨機粒子(隨機解)。然後通過迭代找到最優解。在每一次迭代中,粒子通過跟蹤兩個極值來更新自己。第一個就是粒子本身所找到的最優解,這個解叫做個體極值pBest。另一個極值是整個種群目前找到的最優解,這個極值是全局極值gBest。另外也可以不用整個種群而只是用其中一部分作為粒子的鄰居,那麼在所有鄰居中的極值就是局部極值。 模擬退火,遺傳演算法,禁忌搜索,神經網路在解決全局最優解的問題上有著獨到的優點,並且,它們有一個共同的特點:都是模擬了自然過程。模擬退火思路源於物理學中固體物質的退火過程,遺傳演算法借鑒了自然界優勝劣汰的進化思想,禁忌搜索模擬了人類有記憶過程的智力過程,神經網路更是直接模擬了人腦。
它們之間的聯系也非常緊密,比如模擬退火和遺傳演算法為神經網路提供更優良的學習演算法提供了思路。把它們有機地綜合在一起,取長補短,性能將更加優良。
這幾種智能演算法有別於一般的按照圖靈機進行精確計算的程序,尤其是人工神經網路,是對計算機模型的一種新的詮釋,跳出了馮·諾依曼機的圈子,按照這種思想來設計的計算機有著廣闊的發展前景

❾ 用極小造句怎麼造呀

極小,亦稱為最小,最小值。在數學分析中,在給定范圍內(相對極值)或函數的整個域(全局或絕對極值),函數的最大值和最小值被統稱為極值(極數)。按照該詞義造句有:

1,臨界點可能是局部極小,局部極大,或者鞍點。

2,首先,給出整數規劃問題的離散局部極小解的定義,並設計找離散局部極小解的鄰域搜索演算法。

3,極小值時間剖面可直接作時深轉換。

4,吉事多專櫃有不少圓形或長圓形盆,配合極小的檯面,非常秀氣。

5, 即使極小的錯誤都可能會破壞整個項目。例如,過梁裁剪錯誤就不能正確的安放在石頭上面。

6,本文給出了極小化最大函數問題的一個可行方向演算法,它把問題歸結為求解線性規劃問題,並證明了該演算法的收斂性。

9,由於遍歷性可作為避免搜索過程陷入局部極小的有效機制,因此混沌理論已成為一種新穎且有潛力的優化工具。

10,需要大量的煙,但極小量的明火。

11,我家有一隻小花貓,它圓圓的腦袋上有一雙明亮的眼睛,使它晚上能看清東西。它還有一雙靈活的耳朵,極小的聲音它都能辨別出來。它的身後長著一條長長的尾巴,走路時總是高高的翹著。

12,因為宇宙的結構是最完善的而且是最明智的上帝的創造,因此,如果在宇宙里沒有某種極大的或極小的法則,那就根本不會發生任何事情。

13,紫鵑道:"我只當是寶二爺再不上我們這門了,誰知這會子又來了。"寶玉笑道:"你們把極小的事倒說大了。好好的為什麼不來?我便死了,魂也要一日來一百遭。妹妹可大好了?"

14, 有一種殺人利器「激光槍,」它一次能射出500英里,這種槍體形極小,能隨時帶在身上。而且不象21世紀的槍,有防彈衣可以配用,現在這種槍只要射中哪裡,哪裡就會煙消雲散。

閱讀全文

與鄰域搜索演算法優點相關的資料

熱點內容
上門正骨用什麼app 瀏覽:756
安卓為什麼免費使用 瀏覽:397
加密貨幣都有哪些平台 瀏覽:625
python和matlab難度 瀏覽:388
python爬蟲很難學么 瀏覽:572
小米解壓積木可以組成什麼呢 瀏覽:816
為什麼滴滴出行app還能用 瀏覽:564
怎麼升級手機android 瀏覽:922
php權威編程pdf 瀏覽:994
扣扣加密技巧 瀏覽:720
蘋果如何創建伺服器錯誤 瀏覽:497
軟考初級程序員大題分值 瀏覽:475
js壓縮視頻文件 瀏覽:579
linux如何通過命令創建文件 瀏覽:991
應用加密app還能訪問應用嘛 瀏覽:435
安卓怎麼用支付寶交違章罰款 瀏覽:667
php面向對象的程序設計 瀏覽:506
數據挖掘演算法書籍推薦 瀏覽:895
投訴聯通用什麼app 瀏覽:152
web伺服器變更ip地址 瀏覽:956