A. 排序演算法穩定性的常見排序演算法的穩定性
堆排序、快速排序、希爾排序、直接選擇排序不是穩定的排序演算法,而基數排序、冒泡排序、直接插入排序、折半插入排序、歸並排序是穩定的排序演算法。
首先,排序演算法的穩定性大家應該都知道,通俗地講就是能保證排序前2個相等的數其在序列的前後位置順序和排序後它們兩個的前後位置順序相同。在簡單形式化一下,如果Ai = Aj, Ai原來在位置前,排序後Ai還是要在Aj位置前。
其次,說一下穩定性的好處。排序演算法如果是穩定的,那麼從一個鍵上排序,然後再從另一個鍵上排序,第一個鍵排序的結果可以為第二個鍵排序所用。基數排序就 是這樣,先按低位排序,逐次按高位排序,低位相同的元素其順序再高位也相同時是不會改變的。
回到主題,現在分析一下常見的排序演算法的穩定性,每個都給出簡單的理由。
(1)冒泡排序
冒泡排序就是把小的元素往前調或者把大的元素往後調。比較是相鄰的兩個元素比較,交換也發生在這兩個元素之間。所以,如果兩個元素相等,我想你是不會再無 聊地把他們倆交換一下的;如果兩個相等的元素沒有相鄰,那麼即使通過前面的兩兩交換把兩個相鄰起來,這時候也不會交換,所以相同元素的前後順序並沒有改 變,所以冒泡排序是一種穩定排序演算法。
(2)選擇排序
選擇排序是給每個位置選擇當前元素最小的,比如給第一個位置選擇最小的,在剩餘元素裡面給第二個元素選擇第二小的,依次類推,直到第n-1個元素,第n個 元素不用選擇了,因為只剩下它一個最大的元素了。那麼,在一趟選擇,如果當前元素比一個元素小,而該小的元素又出現在一個和當前元素相等的元素後面,那麼 交換後穩定性就被破壞了。比較拗口,舉個例子,序列5 8 5 2 9, 我們知道第一遍選擇第1個元素5會和2交換,那麼原序列中2個5的相對前後順序就被破壞了,所以選擇排序不是一個穩定的排序演算法。
(3)插入排序
插入排序是在一個已經有序的小序列的基礎上,一次插入一個元素。當然,剛開始這個有序的小序列只有1個元素,就是第一個元素。比較是從有序序列的末尾開 始,也就是想要插入的元素和已經有序的最大者開始比起,如果比它大則直接插入在其後面,否則一直往前找直到找到它該插入的位置。如果碰見一個和插入元素相 等的,那麼插入元素把想插入的元素放在相等元素的後面。所以,相等元素的前後順序沒有改變,從原無序序列出去的順序就是排好序後的順序,所以插入排序是穩 定的。
(4)快速排序
快速排序有兩個方向,左邊的i下標一直往右走,當a[i] <= a[center_index],其中center_index是中樞元素的數組下標,一般取為數組第0個元素。而右邊的j下標一直往左走,當a[j] > a[center_index]。如果i和j都走不動了,i <= j, 交換a[i]和a[j],重復上面的過程,直到i>j。 交換a[j]和a[center_index],完成一趟快速排序。在中樞元素和a[j]交換的時候,很有可能把前面的元素的穩定性打亂,比如序列為 5 3 3 4 3 8 9 10 11, 現在中樞元素5和3(第5個元素,下標從1開始計)交換就會把元素3的穩定性打亂,所以快速排序是一個不穩定的排序演算法,不穩定發生在中樞元素和a[j] 交換的時刻。
(5)歸並排序
歸並排序是把序列遞歸地分成短序列,遞歸出口是短序列只有1個元素(認為直接有序)或者2個序列(1次比較和交換),然後把各個有序的段序列合並成一個有 序的長序列,不斷合並直到原序列全部排好序。可以發現,在1個或2個元素時,1個元素不會交換,2個元素如果大小相等也沒有人故意交換,這不會破壞穩定 性。那麼,在短的有序序列合並的過程中,穩定是是否受到破壞?沒有,合並過程中我們可以保證如果兩個當前元素相等時,我們把處在前面的序列的元素保存在結 果序列的前面,這樣就保證了穩定性。所以,歸並排序也是穩定的排序演算法。
(6)基數排序
基數排序是按照低位先排序,然後收集;再按照高位排序,然後再收集;依次類推,直到最高位。有時候有些屬性是有優先順序順序的,先按低優先順序排序,再按高優 先級排序,最後的次序就是高優先順序高的在前,高優先順序相同的低優先順序高的在前。基數排序基於分別排序,分別收集,所以其是穩定的排序演算法。
(7)希爾排序(shell)
希爾排序是按照不同步長對元素進行插入排序,當剛開始元素很無序的時候,步長最大,所以插入排序的元素個數很少,速度很快;當元素基本有序了,步長很小, 插入排序對於有序的序列效率很高。所以,希爾排序的時間復雜度會比o(n^2)好一些。由於多次插入排序,我們知道一次插入排序是穩定的,不會改變相同元 素的相對順序,但在不同的插入排序過程中,相同的元素可能在各自的插入排序中移動,最後其穩定性就會被打亂,所以shell排序是不穩定的。
(8)堆排序
我們知道堆的結構是節點i的孩子為2*i和2*i+1節點,大頂堆要求父節點大於等於其2個子節點,小頂堆要求父節點小於等於其2個子節點。在一個長為n 的序列,堆排序的過程是從第n/2開始和其子節點共3個值選擇最大(大頂堆)或者最小(小頂堆),這3個元素之間的選擇當然不會破壞穩定性。但當為n /2-1, n/2-2, ...1這些個父節點選擇元素時,就會破壞穩定性。有可能第n/2個父節點交換把後面一個元素交換過去了,而第n/2-1個父節點把後面一個相同的元素沒 有交換,那麼這2個相同的元素之間的穩定性就被破壞了。所以,堆排序不是穩定的排序演算法。
綜上,得出結論: 選擇排序、快速排序、希爾排序、堆排序不是穩定的排序演算法,而冒泡排序、插入排序、歸並排序和基數排序是穩定的排序演算法。
B. 排序演算法有多少種
排序(Sorting) 是計算機程序設計中的一種重要操作,它的功能是將一個數據元素(或記錄)的任意序列,重新排列成一個關鍵字有序的序列。
排序就是把集合中的元素按照一定的次序排序在一起。一般來說有升序排列和降序排列2種排序,在演算法中有8中基本排序:
(1)冒泡排序;
(2)選擇排序;
(3)插入排序;
(4)希爾排序;
(5)歸並排序;
(6)快速排序;
(7)基數排序;
(8)堆排序;
(9)計數排序;
(10)桶排序。
插入排序
插入排序演算法是基於某序列已經有序排列的情況下,通過一次插入一個元素的方式按照原有排序方式增加元素。這種比較是從該有序序列的最末端開始執行,即要插入序列中的元素最先和有序序列中最大的元素比較,若其大於該最大元素,則可直接插入最大元素的後面即可,否則再向前一位比較查找直至找到應該插入的位置為止。插入排序的基本思想是,每次將1個待排序的記錄按其關鍵字大小插入到前面已經排好序的子序列中,尋找最適當的位置,直至全部記錄插入完畢。執行過程中,若遇到和插入元素相等的位置,則將要插人的元素放在該相等元素的後面,因此插入該元素後並未改變原序列的前後順序。我們認為插入排序也是一種穩定的排序方法。插入排序分直接插入排序、折半插入排序和希爾排序3類。
冒泡排序
冒泡排序演算法是把較小的元素往前調或者把較大的元素往後調。這種方法主要是通過對相鄰兩個元素進行大小的比較,根據比較結果和演算法規則對該二元素的位置進行交換,這樣逐個依次進行比較和交換,就能達到排序目的。冒泡排序的基本思想是,首先將第1個和第2個記錄的關鍵字比較大小,如果是逆序的,就將這兩個記錄進行交換,再對第2個和第3個記錄的關鍵字進行比較,依次類推,重復進行上述計算,直至完成第(n一1)個和第n個記錄的關鍵字之間的比較,此後,再按照上述過程進行第2次、第3次排序,直至整個序列有序為止。排序過程中要特別注意的是,當相鄰兩個元素大小一致時,這一步操作就不需要交換位置,因此也說明冒泡排序是一種嚴格的穩定排序演算法,它不改變序列中相同元素之間的相對位置關系。
選擇排序
選擇排序演算法的基本思路是為每一個位置選擇當前最小的元素。選擇排序的基本思想是,基於直接選擇排序和堆排序這兩種基本的簡單排序方法。首先從第1個位置開始對全部元素進行選擇,選出全部元素中最小的給該位置,再對第2個位置進行選擇,在剩餘元素中選擇最小的給該位置即可;以此類推,重復進行「最小元素」的選擇,直至完成第(n-1)個位置的元素選擇,則第n個位置就只剩唯一的最大元素,此時不需再進行選擇。使用這種排序時,要注意其中一個不同於冒泡法的細節。舉例說明:序列58539.我們知道第一遍選擇第1個元素「5」會和元素「3」交換,那麼原序列中的兩個相同元素「5」之間的前後相對順序就發生了改變。因此,我們說選擇排序不是穩定的排序演算法,它在計算過程中會破壞穩定性。
快速排序
快速排序的基本思想是:通過一趟排序演算法把所需要排序的序列的元素分割成兩大塊,其中,一部分的元素都要小於或等於另外一部分的序列元素,然後仍根據該種方法對劃分後的這兩塊序列的元素分別再次實行快速排序演算法,排序實現的整個過程可以是遞歸的來進行調用,最終能夠實現將所需排序的無序序列元素變為一個有序的序列。
歸並排序
歸並排序演算法就是把序列遞歸劃分成為一個個短序列,以其中只有1個元素的直接序列或者只有2個元素的序列作為短序列的遞歸出口,再將全部有序的短序列按照一定的規則進行排序為長序列。歸並排序融合了分治策略,即將含有n個記錄的初始序列中的每個記錄均視為長度為1的子序列,再將這n個子序列兩兩合並得到n/2個長度為2(當凡為奇數時會出現長度為l的情況)的有序子序列;將上述步驟重復操作,直至得到1個長度為n的有序長序列。需要注意的是,在進行元素比較和交換時,若兩個元素大小相等則不必刻意交換位置,因此該演算法不會破壞序列的穩定性,即歸並排序也是穩定的排序演算法。
C. 常用的排序演算法都有哪些
排序演算法 所謂排序,就是使一串記錄,按照其中的某個或某些關鍵字的大小,遞增或遞減的排列起來的操作。
分類
在計算機科學所使用的排序演算法通常被分類為:
計算的復雜度(最差、平均、和最好表現),依據串列(list)的大小(n)。一般而言,好的表現是O。(n log n),且壞的行為是Ω(n2)。對於一個排序理想的表現是O(n)。僅使用一個抽象關鍵比較運算的排序演算法總平均上總是至少需要Ω(n log n)。
記憶體使用量(以及其他電腦資源的使用)
穩定度:穩定排序演算法會依照相等的關鍵(換言之就是值)維持紀錄的相對次序。也就是一個排序演算法是穩定的,就是當有兩個有相等關鍵的紀錄R和S,且在原本的串列中R出現在S之前,在排序過的串列中R也將會是在S之前。
一般的方法:插入、交換、選擇、合並等等。交換排序包含冒泡排序(bubble sort)和快速排序(quicksort)。選擇排序包含shaker排序和堆排序(heapsort)。
當相等的元素是無法分辨的,比如像是整數,穩定度並不是一個問題。然而,假設以下的數對將要以他們的第一個數字來排序。
(4, 1) (3, 1) (3, 7) (5, 6)
在這個狀況下,有可能產生兩種不同的結果,一個是依照相等的鍵值維持相對的次序,而另外一個則沒有:
(3, 1) (3, 7) (4, 1) (5, 6) (維持次序)
(3, 7) (3, 1) (4, 1) (5, 6) (次序被改變)
不穩定排序演算法可能會在相等的鍵值中改變紀錄的相對次序,但是穩定排序演算法從來不會如此。不穩定排序演算法可以被特別地時作為穩定。作這件事情的一個方式是人工擴充鍵值的比較,如此在其他方面相同鍵值的兩個物件間之比較,就會被決定使用在原先資料次序中的條目,當作一個同分決賽。然而,要記住這種次序通常牽涉到額外的空間負擔。
排列演算法列表
在這個表格中,n是要被排序的紀錄數量以及k是不同鍵值的數量。
穩定的
冒泡排序(bubble sort) — O(n2)
雞尾酒排序 (Cocktail sort, 雙向的冒泡排序) — O(n2)
插入排序 (insertion sort)— O(n2)
桶排序 (bucket sort)— O(n); 需要 O(k) 額外 記憶體
計數排序 (counting sort) — O(n+k); 需要 O(n+k) 額外 記憶體
歸並排序 (merge sort)— O(n log n); 需要 O(n) 額外記憶體
原地歸並排序 — O(n2)
二叉樹排序 (Binary tree sort) — O(n log n); 需要 O(n) 額外記憶體
鴿巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 額外記憶體
基數排序 (radix sort)— O(n·k); 需要 O(n) 額外記憶體
Gnome sort — O(n2)
Library sort — O(n log n) with high probability, 需要 (1+ε)n 額外記憶體
不穩定
選擇排序 (selection sort)— O(n2)
希爾排序 (shell sort)— O(n log n) 如果使用最佳的現在版本
Comb sort — O(n log n)
堆排序 (heapsort)— O(n log n)
Smoothsort — O(n log n)
快速排序 (quicksort)— O(n log n) 期望時間, O(n2) 最壞情況; 對於大的、亂數串列一般相信是最快的已知排序
Introsort — O(n log n)
Patience sorting — O(n log n + k) 最外情況時間, 需要 額外的 O(n + k) 空間, 也需要找到最長的遞增子序列(longest increasing subsequence)
不實用的排序演算法
Bogo排序 — O(n × n!) 期望時間, 無窮的最壞情況。
Stupid sort — O(n3); 遞回版本需要 O(n2) 額外記憶體
Bead sort — O(n) or O(√n), 但需要特別的硬體
Pancake sorting — O(n), 但需要特別的硬體
排序的演算法
排序的演算法有很多,對空間的要求及其時間效率也不盡相同。下面列出了一些常見的排序演算法。這裡面插入排序和冒泡排序又被稱作簡單排序,他們對空間的要求不高,但是時間效率卻不穩定;而後面三種排序相對於簡單排序對空間的要求稍高一點,但時間效率卻能穩定在很高的水平。基數排序是針對關鍵字在一個較小范圍內的排序演算法。
插入排序
冒泡排序
選擇排序
快速排序
堆排序
歸並排序
基數排序
希爾排序
插入排序
插入排序是這樣實現的:
首先新建一個空列表,用於保存已排序的有序數列(我們稱之為"有序列表")。
從原數列中取出一個數,將其插入"有序列表"中,使其仍舊保持有序狀態。
重復2號步驟,直至原數列為空。
插入排序的平均時間復雜度為平方級的,效率不高,但是容易實現。它藉助了"逐步擴大成果"的思想,使有序列表的長度逐漸增加,直至其長度等於原列表的長度。
冒泡排序
冒泡排序是這樣實現的:
首先將所有待排序的數字放入工作列表中。
從列表的第一個數字到倒數第二個數字,逐個檢查:若某一位上的數字大於他的下一位,則將它與它的下一位交換。
重復2號步驟,直至再也不能交換。
冒泡排序的平均時間復雜度與插入排序相同,也是平方級的,但也是非常容易實現的演算法。
選擇排序
選擇排序是這樣實現的:
設數組內存放了n個待排數字,數組下標從1開始,到n結束。
i=1
從數組的第i個元素開始到第n個元素,尋找最小的元素。
將上一步找到的最小元素和第i位元素交換。
如果i=n-1演算法結束,否則回到第3步
選擇排序的平均時間復雜度也是O(n²)的。
快速排序
現在開始,我們要接觸高效排序演算法了。實踐證明,快速排序是所有排序演算法中最高效的一種。它採用了分治的思想:先保證列表的前半部分都小於後半部分,然後分別對前半部分和後半部分排序,這樣整個列表就有序了。這是一種先進的思想,也是它高效的原因。因為在排序演算法中,演算法的高效與否與列表中數字間的比較次數有直接的關系,而"保證列表的前半部分都小於後半部分"就使得前半部分的任何一個數從此以後都不再跟後半部分的數進行比較了,大大減少了數字間不必要的比較。但查找數據得另當別論了。
堆排序
堆排序與前面的演算法都不同,它是這樣的:
首先新建一個空列表,作用與插入排序中的"有序列表"相同。
找到數列中最大的數字,將其加在"有序列表"的末尾,並將其從原數列中刪除。
重復2號步驟,直至原數列為空。
堆排序的平均時間復雜度為nlogn,效率高(因為有堆這種數據結構以及它奇妙的特徵,使得"找到數列中最大的數字"這樣的操作只需要O(1)的時間復雜度,維護需要logn的時間復雜度),但是實現相對復雜(可以說是這里7種演算法中比較難實現的)。
看起來似乎堆排序與插入排序有些相像,但他們其實是本質不同的演算法。至少,他們的時間復雜度差了一個數量級,一個是平方級的,一個是對數級的。
平均時間復雜度
插入排序 O(n2)
冒泡排序 O(n2)
選擇排序 O(n2)
快速排序 O(n log n)
堆排序 O(n log n)
歸並排序 O(n log n)
基數排序 O(n)
希爾排序 O(n1.25)
冒泡排序
654
比如說這個,我想讓它從小到大排序,怎麼做呢?
第一步:6跟5比,發現比它大,則交換。564
第二步:5跟4比,發現比它大,則交換。465
第三步:6跟5比,發現比它大,則交換。456
D. 排序是什麼意思
排序是計算機的一種操作方法,其目的是將一組「無序」的記錄序列調整為「有序」的記錄序列,主要分為內部排序和外部排序。在計算機科學與數學中,一個排序演算法(英語:Sorting algorithm)是一種能將一串數據依照特定排序方式進行排列的一種演算法。最常用到的排序方式是數值順序以及字典順序。有效的排序演算法在一些演算法(例如搜索演算法與合並演算法)中是重要的,如此這些演算法才能得到正確解答。排知哪序演算法也用在處理文字數據以及產生人類可讀的輸出結果。
(4)排序演算法的敘述擴展閱讀:
排序的分類
1、穩定排序:搭信碼假設在待排序的文件中,存在兩個或兩個以上的記錄具有相同的關鍵字,在用某種排序法排序後,若這些相同關鍵字的元素的相對次序仍然不變,則這種排序方法是穩定的。其中冒泡,插入,基數,歸並屬於穩定排序,選擇,快速,希爾,歸屬於不穩定排序。
2、就地排序:若排序演算法所需的輔助空間坦野並不依賴於問題的規模n,即輔助空間為O,則稱為就地排序。
E. 有關匹配和排序的演算法,高手幫幫忙哈
一、插入排序(Insertion Sort)
1. 基本思想:
每次將一個待排序的數據元素,插入到前面已經排好序的數列中的適當位置,使數列依然有序;直到待排序數據元素全部插入完為止。
2. 排序過程:
【示例】:
[初始關鍵字] [49] 38 65 97 76 13 27 49
J=2(38) [38 49] 65 97 76 13 27 49
J=3(65) [38 49 65] 97 76 13 27 49
J=4(97) [38 49 65 97] 76 13 27 49
J=5(76) [38 49 65 76 97] 13 27 49
J=6(13) [13 38 49 65 76 97] 27 49
J=7(27) [13 27 38 49 65 76 97] 49
J=8(49) [13 27 38 49 49 65 76 97]
Procere InsertSort(Var R : FileType);
//對R[1..N]按遞增序進行插入排序, R[0]是監視哨//
Begin
for I := 2 To N Do //依次插入R[2],...,R[n]//
begin
R[0] := R[I]; J := I - 1;
While R[0] < R[J] Do //查找R[I]的插入位置//
begin
R[J+1] := R[J]; //將大於R[I]的元素後移//
J := J - 1
end
R[J + 1] := R[0] ; //插入R[I] //
end
End; //InsertSort //
二、選擇排序
1. 基本思想:
每一趟從待排序的數據元素中選出最小(或最大)的一個元素,順序放在已排好序的數列的最後,直到全部待排序的數據元素排完。
2. 排序過程:
【示例】:
初始關鍵字 [49 38 65 97 76 13 27 49]
第一趟排序後 13 〔38 65 97 76 49 27 49]
第二趟排序後 13 27 〔65 97 76 49 38 49]
第三趟排序後 13 27 38 [97 76 49 65 49]
第四趟排序後 13 27 38 49 [49 97 65 76]
第五趟排序後 13 27 38 49 49 [97 97 76]
第六趟排序後 13 27 38 49 49 76 [76 97]
第七趟排序後 13 27 38 49 49 76 76 [ 97]
最後排序結果 13 27 38 49 49 76 76 97
Procere SelectSort(Var R : FileType); //對R[1..N]進行直接選擇排序 //
Begin
for I := 1 To N - 1 Do //做N - 1趟選擇排序//
begin
K := I;
For J := I + 1 To N Do //在當前無序區R[I..N]中選最小的元素R[K]//
begin
If R[J] < R[K] Then K := J
end;
If K <>; I Then //交換R[I]和R[K] //
begin Temp := R[I]; R[I] := R[K]; R[K] := Temp; end;
end
End; //SelectSort //
三、冒泡排序(BubbleSort)
1. 基本思想:
兩兩比較待排序數據元素的大小,發現兩個數據元素的次序相反時即進行交換,直到沒有反序的數據元素為止。
2. 排序過程:
設想被排序的數組R〔1..N〕垂直豎立,將每個數據元素看作有重量的氣泡,根據輕氣泡不能在重氣泡之下的原則,從下往上掃描數組R,凡掃描到違反本原則的輕氣泡,就使其向上"漂浮",如此反復進行,直至最後任何兩個氣泡都是輕者在上,重者在下為止。
【示例】:
49 13 13 13 13 13 13 13
38 49 27 27 27 27 27 27
65 38 49 38 38 38 38 38
97 65 38 49 49 49 49 49
76 97 65 49 49 49 49 49
13 76 97 65 65 65 65 65
27 27 76 97 76 76 76 76
49 49 49 76 97 97 97 97
Procere BubbleSort(Var R : FileType) //從下往上掃描的起泡排序//
Begin
For I := 1 To N-1 Do //做N-1趟排序//
begin
NoSwap := True; //置未排序的標志//
For J := N - 1 DownTo 1 Do //從底部往上掃描//
begin
If R[J+1]< R[J] Then //交換元素//
begin
Temp := R[J+1]; R[J+1 := R[J]; R[J] := Temp;
NoSwap := False
end;
end;
If NoSwap Then Return//本趟排序中未發生交換,則終止演算法//
end
End; //BubbleSort//
四、快速排序(Quick Sort)
1. 基本思想:
在當前無序區R[1..H]中任取一個數據元素作為比較的"基準"(不妨記為X),用此基準將當前無序區劃分為左右兩個較小的無序區:R[1..I-1]和R[I+1..H],且左邊的無序子區中數據元素均小於等於基準元素,右邊的無序子區中數據元素均大於等於基準元素,而基準X則位於最終排序的位置上,即R[1..I-1]≤X.Key≤R[I+1..H](1≤I≤H),當R[1..I-1]和R[I+1..H]均非空時,分別對它們進行上述的劃分過程,直至所有無序子區中的數據元素均已排序為止。
2. 排序過程:
【示例】:
初始關鍵字 [49 38 65 97 76 13 27 49〕
第一次交換後 〔27 38 65 97 76 13 49 49〕
第二次交換後 〔27 38 49 97 76 13 65 49〕
J向左掃描,位置不變,第三次交換後 〔27 38 13 97 76 49 65 49〕
I向右掃描,位置不變,第四次交換後 〔27 38 13 49 76 97 65 49〕
J向左掃描 〔27 38 13 49 76 97 65 49〕
(一次劃分過程)
初始關鍵字 〔49 38 65 97 76 13 27 49〕
一趟排序之後 〔27 38 13〕 49 〔76 97 65 49〕
二趟排序之後 〔13〕 27 〔38〕 49 〔49 65〕76 〔97〕
三趟排序之後 13 27 38 49 49 〔65〕76 97
最後的排序結果 13 27 38 49 49 65 76 97
各趟排序之後的狀態
Procere Parttion(Var R : FileType; L, H : Integer; Var I : Integer);
//對無序區R[1,H]做劃分,I給以出本次劃分後已被定位的基準元素的位置 //
Begin
I := 1; J := H; X := R[I] ;//初始化,X為基準//
Repeat
While (R[J] >;= X) And (I < J) Do
begin
J := J - 1 //從右向左掃描,查找第1個小於 X的元素//
If I < J Then //已找到R[J] 〈X//
begin
R[I] := R[J]; //相當於交換R[I]和R[J]//
I := I + 1
end;
While (R[I] <= X) And (I < J) Do
I := I + 1 //從左向右掃描,查找第1個大於 X的元素///
end;
If I < J Then //已找到R[I] >; X //
begin R[J] := R[I]; //相當於交換R[I]和R[J]//
J := J - 1
end
Until I = J;
R[I] := X //基準X已被最終定位//
End; //Parttion //
Procere QuickSort(Var R :FileType; S,T: Integer); //對R[S..T]快速排序//
Begin
If S < T Then //當R[S..T]為空或只有一個元素是無需排序//
begin
Partion(R, S, T, I); //對R[S..T]做劃分//
QuickSort(R, S, I-1);//遞歸處理左區間R[S,I-1]//
QuickSort(R, I+1,T);//遞歸處理右區間R[I+1..T] //
end;
End; //QuickSort//
五、堆排序(Heap Sort)
1. 基本思想:
堆排序是一樹形選擇排序,在排序過程中,將R[1..N]看成是一顆完全二叉樹的順序存儲結構,利用完全二叉樹中雙親結點和孩子結點之間的內在關系來選擇最小的元素。
2. 堆的定義: N個元素的序列K1,K2,K3,...,Kn.稱為堆,當且僅當該序列滿足特性:
Ki≤K2i Ki ≤K2i+1(1≤ I≤ [N/2])
堆實質上是滿足如下性質的完全二叉樹:樹中任一非葉子結點的關鍵字均大於等於其孩子結點的關鍵字。例如序列10,15,56,25,30,70就是一個堆,它對應的完全二叉樹如上圖所示。這種堆中根結點(稱為堆頂)的關鍵字最小,我們把它稱為小根堆。反之,若完全二叉樹中任一非葉子結點的關鍵字均大於等於其孩子的關鍵字,則稱之為大根堆。
3. 排序過程:
堆排序正是利用小根堆(或大根堆)來選取當前無序區中關鍵字小(或最大)的記錄實現排序的。我們不妨利用大根堆來排序。每一趟排序的基本操作是:將當前無序區調整為一個大根堆,選取關鍵字最大的堆頂記錄,將它和無序區中的最後一個記錄交換。這樣,正好和直接選擇排序相反,有序區是在原記錄區的尾部形成並逐步向前擴大到整個記錄區。
【示例】:對關鍵字序列42,13,91,23,24,16,05,88建堆
Procere Sift(Var R :FileType; I, M : Integer);
//在數組R[I..M]中調用R[I],使得以它為完全二叉樹構成堆。事先已知其左、右子樹(2I+1 <=M時)均是堆//
Begin
X := R[I]; J := 2*I; //若J <=M, R[J]是R[I]的左孩子//
While J <= M Do //若當前被調整結點R[I]有左孩子R[J]//
begin
If (J < M) And R[J].Key < R[J+1].Key Then
J := J + 1 //令J指向關鍵字較大的右孩子//
//J指向R[I]的左、右孩子中關鍵字較大者//
If X.Key < R[J].Key Then //孩子結點關鍵字較大//
begin
R[I] := R[J]; //將R[J]換到雙親位置上//
I := J ; J := 2*I //繼續以R[J]為當前被調整結點往下層調整//
end;
Else
Exit//調整完畢,退出循環//
end
R[I] := X;//將最初被調整的結點放入正確位置//
End;//Sift//
Procere HeapSort(Var R : FileType); //對R[1..N]進行堆排序//
Begin
For I := N Div Downto 1 Do //建立初始堆//
Sift(R, I , N)
For I := N Downto 2 do //進行N-1趟排序//
begin
T := R[1]; R[1] := R[I]; R[I] := T;//將當前堆頂記錄和堆中最後一個記錄交換//
Sift(R, 1, I-1) //將R[1..I-1]重成堆//
end
End; //HeapSort//
六、幾種排序演算法的比較和選擇
1. 選取排序方法需要考慮的因素:
(1) 待排序的元素數目n;
(2) 元素本身信息量的大小;
(3) 關鍵字的結構及其分布情況;
(4) 語言工具的條件,輔助空間的大小等。
2. 小結:
(1) 若n較小(n <= 50),則可以採用直接插入排序或直接選擇排序。由於直接插入排序所需的記錄移動操作較直接選擇排序多,因而當記錄本身信息量較大時,用直接選擇排序較好。
(2) 若文件的初始狀態已按關鍵字基本有序,則選用直接插入或冒泡排序為宜。
(3) 若n較大,則應採用時間復雜度為O(nlog2n)的排序方法:快速排序、堆排序或歸並排序。 快速排序是目前基於比較的內部排序法中被認為是最好的方法。
(4) 在基於比較排序方法中,每次比較兩個關鍵字的大小之後,僅僅出現兩種可能的轉移,因此可以用一棵二叉樹來描述比較判定過程,由此可以證明:當文件的n個關鍵字隨機分布時,任何藉助於"比較"的排序演算法,至少需要O(nlog2n)的時間。
(5) 當記錄本身信息量較大時,為避免耗費大量時間移動記錄,可以用鏈表作為存儲結構。
F. 排序演算法概述
十大排序演算法:冒泡排序,選擇排序,插入排序,歸並排序,堆排序,快速排序、希爾排序、計數排序,基數排序,桶排序
穩定 :如果a原本在b前面,而a=b,排序之後a仍然在b的前面;
不穩定 :如果a原本在b的前面,而a=b,排序之後a可能會出現在b的後面;
排序演算法如果是穩定的,那麼從一個鍵上排序,然後再從另一個鍵上排序,前一個鍵排序的結果可以為後一個鍵排序所用。
演算法的復雜度往往取決於數據的規模大小和數據本身分布性質。
時間復雜度 : 一個演算法執行所耗費的時間。
空間復雜度 :對一個演算法在運行過程中臨時佔用存儲空間大小的量度。
常見復雜度由小到大 :O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n)
在各種不同演算法中,若演算法中語句執行次數(佔用空間)為一個常數,則復雜度為O(1);
當一個演算法的復雜度與以2為底的n的對數成正比時,可表示為O(log n);
當一個演算法的復雜度與n成線性比例關系時,可表示為O (n),依次類推。
冒泡、選擇、插入排序需要兩個for循環,每次只關注一個元素,平均時間復雜度為
(一遍找元素O(n),一遍找位置O(n))
快速、歸並、堆基於分治思想,log以2為底,平均時間復雜度往往和O(nlogn)(一遍找元素O(n),一遍找位置O(logn))相關
而希爾排序依賴於所取增量序列的性質,但是到目前為止還沒有一個最好的增量序列 。例如希爾增量序列時間復雜度為O(n²),而Hibbard增量序列的希爾排序的時間復雜度為 , 有人在大量的實驗後得出結論;當n在某個特定的范圍後希爾排序的最小時間復雜度大約為n^1.3。
從平均時間來看,快速排序是效率最高的:
快速排序中平均時間復雜度O(nlog n),這個公式中隱含的常數因子很小,比歸並排序的O(nlog n)中的要小很多,所以大多數情況下,快速排序總是優於合並排序的。
而堆排序的平均時間復雜度也是O(nlog n),但是堆排序存在著重建堆的過程,它把根節點移除後,把最後的葉子結點拿上來後需要重建堆,但是,拿上的值是要比它的兩個葉子結點要差很多的,一般要比較很多次,才能回到合適的位置。堆排序就會有很多的時間耗在堆調整上。
雖然快速排序的最壞情況為排序規模(n)的平方關系,但是這種最壞情況取決於每次選擇的基準, 對於這種情況,已經提出了很多優化的方法,比如三取樣劃分和Dual-Pivot快排。
同時,當排序規模較小時,劃分的平衡性容易被打破,而且頻繁的方法調用超過了O(nlog n)為
省出的時間,所以一般排序規模較小時,會改用插入排序或者其他排序演算法。
一種簡單的排序演算法。它反復地走訪過要排序的數列,一次比較兩個元素,如果它們的順序錯誤就把它們交換過來。這個工作重復地進行直到沒有元素再需要交換,也就是說該數列已經排序完成。這個演算法的名字由來是因為元素會經由交換慢慢「浮」到數列的頂端。
1.從數組頭開始,比較相鄰的元素。如果第一個比第二個大(小),就交換它們兩個;
2.對每一對相鄰元素作同樣的工作,從開始第一對到尾部的最後一對,這樣在最後的元素應該會是最大(小)的數;
3.重復步驟1~2,重復次數等於數組的長度,直到排序完成。
首先,找到數組中最大(小)的那個元素;
其次,將它和數組的第一個元素交換位置(如果第一個元素就是最大(小)元素那麼它就和自己交換);
再次,在剩下的元素中找到最大(小)的元素,將它與數組的第二個元素交換位置。如此往復,直到將整個數組排序。
這種方法叫做選擇排序,因為它在不斷地選擇剩餘元素之中的最大(小)者。
對於未排序數據,在已排序序列中從後向前掃描,找到相應位置並插入。
為了給要插入的元素騰出空間,我們需要將插入位置之後的已排序元素在都向後移動一位。
插入排序所需的時間取決於輸入中元素的初始順序。例如,對一個很大且其中的元素已經有序(或接近有序)的數組進行排序將會比對隨機順序的數組或是逆序數組進行排序要快得多。
總的來說,插入排序對於部分有序的數組十分高效,也很適合小規模數組。
一種基於插入排序的快速的排序演算法。簡單插入排序對於大規模亂序數組很慢,因為元素只能一點一點地從數組的一端移動到另一端。例如,如果主鍵最小的元素正好在數組的盡頭,要將它挪到正確的位置就需要N-1 次移動。
希爾排序為了加快速度簡單地改進了插入排序,也稱為縮小增量排序,同時該演算法是突破O(n^2)的第一批演算法之一。
希爾排序是把待排序數組按一定數量的分組,對每組使用直接插入排序演算法排序;然後縮小數量繼續分組排序,隨著數量逐漸減少,每組包含的元素越來越多,當數量減至 1 時,整個數組恰被分成一組,排序便完成了。這個不斷縮小的數量,就構成了一個增量序列。
在先前較大的增量下每個子序列的規模都不大,用直接插入排序效率都較高,盡管在隨後的增量遞減分組中子序列越來越大,由於整個序列的有序性也越來越明顯,則排序效率依然較高。
從理論上說,只要一個數組是遞減的,並且最後一個值是1,都可以作為增量序列使用。有沒有一個步長序列,使得排序過程中所需的比較和移動次數相對較少,並且無論待排序列記錄數有多少,演算法的時間復雜度都能漸近最佳呢?但是目前從數學上來說,無法證明某個序列是「最好的」。
常用的增量序列
希爾增量序列 :{N/2, (N / 2)/2, ..., 1},其中N為原始數組的長度,這是最常用的序列,但卻不是最好的
Hibbard序列:{2^k-1, ..., 3,1}
Sedgewick序列:{... , 109 , 41 , 19 , 5,1} 表達式為
歸並排序是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法的一個非常典型的應用。
對於給定的一組數據,利用遞歸與分治技術將數據序列劃分成為越來越小的半子表,在對半子表排序後,再用遞歸方法將排好序的半子表合並成為越來越大的有序序列。
為了提升性能,有時我們在半子表的個數小於某個數(比如15)的情況下,對半子表的排序採用其他排序演算法,比如插入排序。
若將兩個有序表合並成一個有序表,稱為2-路歸並,與之對應的還有多路歸並。
快速排序(Quicksort)是對冒泡排序的一種改進,也是採用分治法的一個典型的應用。
首先任意選取一個數據(比如數組的第一個數)作為關鍵數據,我們稱為基準數(Pivot),然後將所有比它小的數都放到它前面,所有比它大的數都放到它後面,這個過程稱為一趟快速排序,也稱為分區(partition)操作。
通過一趟快速排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數組變成有序序列。
為了提升性能,有時我們在分割後獨立的兩部分的個數小於某個數(比如15)的情況下,會採用其他排序演算法,比如插入排序。
基準的選取:最優的情況是基準值剛好取在無序區數值的中位數,這樣能夠最大效率地讓兩邊排序,同時最大地減少遞歸劃分的次數,但是一般很難做到最優。基準的選取一般有三種方式,選取數組的第一個元素,選取數組的最後一個元素,以及選取第一個、最後一個以及中間的元素的中位數(如4 5 6 7, 第一個4, 最後一個7, 中間的為5, 這三個數的中位數為5, 所以選擇5作為基準)。
Dual-Pivot快排:雙基準快速排序演算法,其實就是用兩個基準數, 把整個數組分成三份來進行快速排序,在這種新的演算法下面,比經典快排從實驗來看節省了10%的時間。
許多應用程序都需要處理有序的元素,但不一定要求他們全部有序,或者不一定要一次就將他們排序,很多時候,我們每次只需要操作數據中的最大元素(最小元素),那麼有一種基於二叉堆的數據結構可以提供支持。
所謂二叉堆,是一個完全二叉樹的結構,同時滿足堆的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。在一個二叉堆中,根節點總是最大(或者最小)節點。
堆排序演算法就是抓住了這一特點,每次都取堆頂的元素,然後將剩餘的元素重新調整為最大(最小)堆,依次類推,最終得到排序的序列。
推論1:對於位置為K的結點 左子結點=2 k+1 右子結點=2 (k+1)
驗證:C:2 2 2+1=5 2 (2+1)=6
推論2:最後一個非葉節點的位置為 (N/2)-1,N為數組長度。
驗證:數組長度為6,(6/2)-1=2
計數排序對一定范圍內的整數排序時候的速度非常快,一般快於其他排序演算法。但計數排序局限性比較大,只限於對整數進行排序,而且待排序元素值分布較連續、跨度小的情況。
計數排序是一個排序時不比較元素大小的排序演算法。
如果一個數組里所有元素都是整數,而且都在0-K以內。對於數組里每個元素來說,如果能知道數組里有多少項小於或等於該元素,就能准確地給出該元素在排序後的數組的位置。
桶排序 (Bucket sort)的工作的原理:假設輸入數據服從均勻分布,利用某種函數的映射關系將數據分到有限數量的桶里,每個桶再分別排序(有可能再使用別的排序演算法或是以遞歸方式繼續使用桶排序)。
桶排序利用函數的映射關系,減少了幾乎所有的比較工作。實際上,桶排序的f(k)值的計算,其作用就相當於快排中劃分,已經把大量數據分割成了基本有序的數據塊(桶)。然後只需要對桶中的少量數據做排序即可。
常見的數據元素一般是由若干位組成的,比如字元串由若干字元組成,整數由若干位0~9數字組成。基數排序按照從右往左的順序,依次將每一位都當做一次關鍵字,然後按照該關鍵字對數組排序,同時每一輪排序都基於上輪排序後的結果;當我們將所有的位排序後,整個數組就達到有序狀態。基數排序不是基於比較的演算法。
基數是什麼意思?對於十進制整數,每一位都只可能是0~9中的某一個,總共10種可能。那10就是它的基,同理二進制數字的基為2;對於字元串,如果它使用的是8位的擴展ASCII字元集,那麼它的基就是256。
基數排序 vs 計數排序 vs 桶排序
基數排序有兩種方法:
MSD 從高位開始進行排序
LSD 從低位開始進行排序
這三種排序演算法都利用了桶的概念,但對桶的使用方法上有明顯差異:
基數排序:根據鍵值的每位數字來分配桶
計數排序:每個桶只存儲單一鍵值
桶排序:每個桶存儲一定范圍的數值
有時,待排序的文件很大,計算機內存不能容納整個文件,這時候對文件就不能使用內部排序了(我們一般的排序都是在內存中做的,所以稱之為內部排序,而外部排序是指待排序的內容不能在內存中一下子完成,它需要做內外存的內容交換),外部排序常採用的排序方法也是歸並排序,這種歸並方法由兩個不同的階段組成:
採用適當的內部排序方法對輸入文件的每個片段進行排序,將排好序的片段(成為歸並段)寫到外部存儲器中(通常由一個可用的磁碟作為臨時緩沖區),這樣臨時緩沖區中的每個歸並段的內容是有序的。
利用歸並演算法,歸並第一階段生成的歸並段,直到只剩下一個歸並段為止。
例如要對外存中4500個記錄進行歸並,而內存大小隻能容納750個記錄,在第一階段,我們可以每次讀取750個記錄進行排序,這樣可以分六次讀取,進行排序,可以得到六個有序的歸並段
每個歸並段的大小是750個記錄,並將這些歸並段全部寫到臨時緩沖區(由一個可用的磁碟充當)內了,這是第一步的排序結果。
完成第二步該怎麼做呢?這時候歸並演算法就有用處了。
G. 八大經典排序演算法原理及實現
該系列文章主要是記錄下自己暑假這段時間的學習筆記,暑期也在實習,抽空學了很多,每個方面的知識我都會另起一篇博客去記錄,每篇頭部主要是另起博客的鏈接。
冒泡排序演算法應該是大家第一個接觸的演算法,其原理都應該懂,但我還是想以自己的語言來敘述下其步奏:
按照計算時間復雜度的規則,去掉常數、去掉最高項系數,其復雜度為O(N^2)
冒泡排序及其復雜度分析
空間復雜度就是在交換元素時那個臨時變數所佔的內存
給定一個整數序列{6,1,2,3,4},每完成一次外層循環的結果為:
我們發現第一次外層循環之後就排序成功了,但是還是會繼續循環下去,造成了不必要的時間復雜度,怎麼優化?
冒泡排序都是相鄰元素的比較,當相鄰元素相等時並不會交換,因此冒泡排序演算法是穩定性演算法
插入排序是對冒泡排序的一種改進
插入排序的思想是數組是部分有序的,再將無序的部分插入有序的部分中去,如圖:
(圖片來自 這里 )
空間復雜度就是在交換元素時那個臨時變數所佔的內存
插入排序的優化,有兩種方案:
文章後面會給出這兩種排序演算法
由於插入排序也是相鄰元素的比較,遇到相等的相鄰元素時不會發生交換,也不會造成相等元素之間的相對位置發生變化
其原理是從未排序的元素中選出最小值(最大值)放在已排序元素的後面
空間復雜度就是在交換元素時那個臨時變數所佔的內存
選擇排序是不穩定的,比如 3 6 3 2 4,第一次外層循環中就會交換第一個元素3和第四個元素2,那麼就會導致原序列的兩個3的相對位置發生變化
希爾排序算是改良版的插入排序演算法,所以也稱為希爾插入排序演算法
其原理是將序列分割成若乾子序列(由相隔某個 增量 的元素組成的),分別進行直接插入排序;接著依次縮小增量繼續進行排序,待整個序列基本有序時,再對全體元素進行插入排序,我們知道當序列基本有序時使用直接插入排序的效率很高。
上述描述只是其原理,真正的實現可以按下述步奏來:
希爾排序的效率取決於 增量值gap 的選取,這涉及到數學上尚未解決的難題,但是某些序列中復雜度可以為O(N 1.3),當然最好肯定是O(N),最壞是O(N 2)
空間復雜度就是在交換元素時那個臨時變數所佔的內存
希爾排序並不只是相鄰元素的比較,有許多跳躍式的比較,難免會出現相同元素之間的相對位置發生變化,所以希爾排序是不穩定的
理解堆排序,就必須得先知道什麼是堆?
二叉樹的特點:
當父節點的值總是大於子結點時為 最大堆 ;反之為 最小堆 ,下圖就為一個二叉堆
一般用數組來表示堆,下標為 i 的結點的父結點下標為(i-1)/2;其左右子結點分別為 (2 i + 1)、(2 i + 2)
怎麼將給定的數組序列按照堆的性質,調整為堆?
這里以建立最小堆為示例,
很明顯對於其葉子結點來說,已經是一個合法的子堆,所以做堆調整時,子節點沒有必要進行,這里只需從結點為A[4] = 50的結點開始做堆調整,即從(n/2 - 1)位置處向上開始做堆調整:
由於每次重新恢復堆的時間復雜度為O(logN),共N - 1次重新恢復堆操作,再加上前面建立堆時N / 2次向下調整,每次調整時間復雜度也為O(logN),二次操作時間相加還是O(N logN)。故堆排序的時間復雜度為O(N * logN)。
空間復雜度就是在交換元素時那個臨時變數所佔的內存
由於堆排序也是跨越式的交換數據,會導致相同元素之間的相對位置發生變化,則演算法不穩定。比如 5 5 5 ,堆化數組後將堆頂元素5與堆尾元素5交換,使得第一個5和第三個5的相對位置發生變化
歸並排序是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
快速排序在應該是大家經常看到、聽到的演算法,但是真正默寫出來是有難度的。希望大家看了下面 挖坑填數 方法後,能快速寫出、快速排序。
其原理就這么幾句話,但是現實起來並不是這么簡單,我們採取流行的一種方式 挖坑填數分治法
對於序列: 72 6 57 88 60 42 83 73 48 85
數組變為: 48 6 57 88 60 42 83 73 88 85
再重復上面的步驟,先從後向前找,再從前向後找:
數組變為: 48 6 57 42 60 72 83 73 88 85
可以看出a[5]前面的數字都小於它,a[5]後面的數字都大於它。因此再對a[0…4]和a[6…9]這二個子區間重復上述步驟就可以了
空間復雜度,主要是遞歸造成的棧空間的使用:
快速排序的優化主要在於基準數的選取
快速排序也是跨越式比較及交換數據,易導致相同元素之間的相對位置發生變化,所以快速排序不穩定
前面也說了二分查找排序是改進的插入排序,不同之處在於,在有序區間查找新元素插入位置時,為了減少比較次數提高效率,採用二分查找演算法進行插入位置的確定
具體步驟,設數組為a[0…n]:
二分查找插入位置,因為不是查找相等值,而是基於比較查插入合適的位置,所以必須查到最後一個元素才知道插入位置。
二分查找最壞時間復雜度:當2^X>=n時,查詢結束,所以查詢的次數就為x,而x等於log2n(以2為底,n的對數)。即O(log2n)
所以,二分查找排序比較次數為:x=log2n
二分查找插入排序耗時的操作有:比較 + 後移賦值。時間復雜度如下:
二分查找排序在交換數據時時進行移動,當遇到有相等值插入時也只會插入其後面,不會影響其相等元素之間的相對位置,所以是穩定的
白話經典演算法排序
冒泡排序選擇排序
快速排序復雜度分析
優化的插入排序
H. 試述排序演算法的一般選擇規則 求解答
當數據量不大時,選插入或選擇排序,不要用冒泡排序,當數據量大而又注重空間復雜性時選擇快速排序或堆排序。
選擇排序法就是在遍歷一組數據之前先選擇一個元素,如果後面的元素小於選擇的元素,則將後面的元素與選擇的元素進行交換,直到遍歷到最後一個元素,這樣經過一次遍歷後就會得到這組數據的最小的元素也就是有序數據的第一個元素。按照這樣的方式繼續選擇元素繼續遍歷,直到遍歷到這組數據完全有序。
(8)排序演算法的敘述擴展閱讀:
注意事項:
非線性時間比較類排序:通過比較來決定元素間的相對次序,由於其時間復雜度不能突破O(nlogn),因此稱為非線性時間比較類排序。
線性時間非比較類排序:不通過比較來決定元素間的相對次序,可以突破基於比較排序的時間下界,以線性時間運行,因此稱為線性時間非比較類排序。
將待排序數組按照步長gap進行分組,然後將每組的元素利用直接插入排序的方法進行排序,每次將gap折半減小,循環上述操作,當gap=1時,利用直接插入,完成排序。