⑴ 速演算法教程書哪裡有賣
買點撥比速算好來~!各個書店大部分都有賣~!你真想賣速算上51cc或在網路收所 網上購書!~在打上《新速演算法》.
⑵ 一分鍾速算免費教程-一分鍾速算免費教程
你去買一套啊,裡面有配套的光碟和相應的配套教材和訓練手冊,這樣學起來快多了,對於數學的基本運算,很快就能全部掌握的哦。你可以去我買的地方買啊:http://www.yifenzhongsusuan.cn/
⑶ 手指速算教程是什麼
手指速算-----手心算------ 表示數的方法是以左手五指設點作為數碼盤,每個手指表示一位數,五個手指可表示個、十、百、千、萬五位數字。
每個手指上9個數,首先我們看,我們的手指上有三根骨節,從上到下,第一骨節中部左側表示
1、第二骨節中部左側表示
2、第三骨節中部左側表示
3、從3往下移到手掌上表示
4、手指的上端表示
5、指肚表示
6、手掌上有三道橫紋,從上到下,第一道橫紋表示
7、第二道橫紋表示
8、第三道橫紋表示9。
(3)速演算法教程擴展閱讀:
手指速算。手心算的計算方法是採用心算辦法利用大腦形象再現指算計算過程而求出結果的方法。它把左手當作一架五檔的虛算盤,用右手五指點按這個虛算盤來進行計算。記數時要用右手的手指點左手相對應的手指。
其明確分工是:右手拇指/專點左手拇指,右手食指專點左手食指,右手中指專點左手中指,右手無名指專點左手無名指,右手小指專點左手小指。對應專業分工各不相擾。哪個手指點按數,哪個手指就伸開,手指不點按數時彎屈,表示0。再配合珠算口訣,便可進行十萬位以內任意數的加減乘除四則運算。
⑷ 史豐收速演算法全套教程是什麼
史豐收速演算法有一套別具一格的計演算法則,計算口訣,也就是計算規律。在加法方面,發明了一位數加法的指算加法:直加、反手加。減內湊反手加、加外湊反手加,進1減補加;
提出了多位數加法的新法則:數位對齊,高位加起,寫十記個,升個為十,串加下位,逐位右移,在乘法方面,總結出乘數是一位數乘法的8條進位規律共36句口訣和8條個位規律共13句口訣,以及一條求乘積的每位數的公式:本位積=(本個十後進)取和的個位數。
有了這三個規律,再加上指算的配合,就可以丟掉乘法九九表進行乘法的快速計算。在減法里,提出了"復合數"概念,用"復合數"作鋪墊,把減法轉化為用加法來計算,又提出用乘法的"一口清"來定商,加快了求商速度。
同時,兩位數乃至多位數的乘除法都有心算方法。這樣,就大大提高了加、減、乘、除運算的計算速度。
(4)速演算法教程擴展閱讀:
史豐收速演算法有自己的計算體系,系統性強,在加法里,先是一位數的直加、反手加、減內湊反手加,加外湊反手加,進1減補加和多個一位數連加,然後是兩位數和多位數加法,在乘法里,先是乘數是2、3、4、5、6、7、8、9的一位數乘法,再是乘數是兩位數的筆算乘法和心算乘法,然後是乘數是三位數的筆算乘法和心算乘法。
在減法里,只有基本概念沒有計算方法,通過以"復合數"為計算橋梁,把減法轉化為用加法來計算。在除法里,先是除數是一位數的除法,再是除數是兩位數的筆算除法和心算除法,然後是除數是三位數的筆算除法和心算除法,為了保證整數四則運算的順利進行,還建立了一套基本概念;
例如1至9的指型、內湊、外湊、補數、復合數、偶同數、自倍數、循環數、假小數、本位、本個、後進、本位積等。由此看出,史豐收速演算法的內涵體系是由淺入深,由易到難的,符合學生的認知規律。
⑸ 速算方法
(1)以手作為運算器並產生直觀的運算過程。
(2)以大腦作為存儲器將運算的過程快速產生反應並表示出。
例如:6752 + 1629 = ?
運算過程和方法: 首位6+1是7,看後位(7+6)滿10,進位進1,首位7+1寫8,百位7減去6的補數4寫3,(後位因5+2不滿10,本位不進位),十位5+2是7,看後位(2+9)滿10進1,本位7+1寫8,個位2減去9的補數1寫1,所以本題結果為8381。
金華全腦速算乘法運算部分原理
令A、B、C、D為待定數字,則任意兩個因數的積都可以表示成:
AB×CD=(AB+A×D/C)×C0+B×D
= AB×C0+A×D×C0/C+B×D
= AB×C0+A×D×10+B×D
= AB×CD+A0×D+B×D
= AB×C0+(A0+B)×D
= AB×C0+AB×D
= AB×(C0+D)
= AB×CD
此方法比較適用於C能整除A×D的乘法,特別適用於兩個因數的「首數」是整數倍,或者兩個因數中有一個因數的「尾數」是「首數」的整數倍。
速算它可以不藉助任何計算工具在很短時間內就能使學習者,用一種思維,一種方法快速准確地掌握任意數加、減、乘、除的速算方法。從而達到快速提高學習者口算和心算的速算能力。
1,加法速算:計算任意位數的加法速算,方法很簡單學習者只要熟記一種加法速算通用口訣 ——「本位相加(針對進位數) 減加補,前位相加多加一 」就可以徹底解決任意位數從高位數到低位數的加法速算方法,比如:
(1),67+48=(6+5)×10+(7-2)=115,
(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
2,減法速算:計算任意位數的減法速算方法也同樣是用一種減法速算通用口訣 ——「本位相減(針對借位數) 加減補,前位相減多減一 」就可以徹底解決任意位數從高位數到低位數的減法速算方法,比如:
(1),67-48=(6-5)×10+(7+2)=19
(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
3,乘法速算:魏氏乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗數×10。
速算嬗數|=(a-c)×d+(b+d-10)×c,,
速算嬗數‖=(a+b-10)×c+(d-c)×a,
速算嬗數Ⅲ=a×d-『b』(補數)×c 。
⑹ 速算的方法與技巧
全腦速算
全腦速算是模擬電腦運算程序而研發的快速腦算技術教程,它能使兒童快速學會腦算任意數加、減、乘、除、乘方及驗算。從而快速提高孩子的運算速度和准確率。
全腦速算的運算原理:
通過雙手的活動來刺激大腦,讓大腦對數字直接產生敏感的條件反射作用,達到快速計算的目的。
(1)以手作為運算器並產生直觀的運算過程。
(2)以大腦作為存儲器將運算的過程快速產生反應並表示出。
例如:6752 + 1629 = ?
運算過程和方法: 首位6+1是7,看後位(7+6)滿10,進位進1,首位7+1寫8,百位7減去6的補數4寫3,(後位因5+2不滿10,本位不進位),十位5+2是7,看後位(2+9)滿10進1,本位7+1寫8,個位2減去9的補數1寫1,所以本題結果為8381。
全腦速算乘法運算部分原理:
假設A、B、C、D為待定數字,則任意兩個因數的積都可以表示成:
AB×CD=(AB+A×D/C)×C0+B×D
= AB×C0 +A×D×C0/C+B×D
= AB×C0 +A×D×10+B×D
= AB×C0 +A0×D+B×D
= AB×C0 +(A0+B)×D
= AB×C0 +AB×D
= AB×(C0 +D)
= AB×CD
此方法比較適用於C能整除A×D的乘法,特別適用於兩個因數的「首數」是整數倍,或者兩個因數中有一個因數的「尾數」是「首數」的整數倍。
兩個因數的積,只要兩個因數的首數是整數倍關系,都可以運用此方法法進行運算,
即A =nC時,
AB×CD=(AB+n D)×C0+B×D
例如:
23×13=29×10+3×3=299
33×12=39×10+3×2=396
加法速算
計算任意位數的加法速算,方法很簡單學習者只要熟記一種加法速算通用口訣 ——「本位相加(針對進位數) 減加補,前位相加多加一 」就可以徹底解決任意位數從高位數到低位數的加法速算問題。
例如:(1),67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
減法速算
計算任意位數的減法速算方法也同樣是用一種減法速算通用口訣 ——「本位相減(針對借位數) 加減補,前位相減多減一 」就可以徹底解決任意位數從高位數到低位數的減法速算問題。
例如:(1),67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
乘法速算
乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗數×10。
速算嬗數|=(a-c)×d+(b+d-10)×c,,
速算嬗數‖=(a+b-10)×c+(d-c)×a,
速算嬗數Ⅲ=a×d-『b』(補數)×c 。 更是獨秀一枝,無以倫比。
(1),用第一種速算嬗數=(a-c)×d+(b+d-10)×c,適用於首同尾任意的任意二位數乘法速算。
比如 :26×28, 47×48,87×84-----等等,其嬗數一目瞭然分別等於「8」,「20 」和「8」即可。
(2), 用第二種速算嬗數=(a+b-10)×c+(d-c)×a適用於一因數的二位數之和接近等於「10」,另一因數的二位數之差接近等於「0」的任意二位數乘法速算 ,
比如 :28×67, 47×98, 73×88----等等 ,其嬗數也同樣可以一目瞭然分別等於「2」,「5 」和「0」即可。
(3), 用第三種速算嬗數=a×d-『b』(補數)×c 適用於任意二位數的乘法速算。
⑺ 奧數中的巧算速算方法
巧算公式
乘法:分配律=ac+ab=a(b+c)
結合律=abc=a(bc)
交換律=ab=ac
積不變性質=ab=(a÷c)×(bc)(c≠0)
加法:結合律=a+b+c=a+(b+c)
交換律=a+b=b+a
除法:a÷b÷c=a÷(b×c)(b≠0,c≠0)
商不變性質=a÷b=(a×d)÷(b×d)(b≠0,d≠0)=(a÷d)÷(b÷d)(b≠0,d≠0)
減法:a-b-c=a-(b+c)
速算方法
全腦速算是模擬電腦運算程序而研發的快速腦算技術教程,它能使兒童快速學會腦算任意數加、減、乘、除、乘方及驗算。從而快速提高孩子的運算速度和准確率。
全腦速算的運算原理:
通過雙手的活動來刺激大腦,讓大腦對數字直接產生敏感的條件反射作用,達到快速計算的目的。
(1)以手作為運算器並產生直觀的運算過程。
(2)以大腦作為存儲器將運算的過程快速產生反應並表示出。
(7)速演算法教程擴展閱讀
國際奧林匹克競賽的目的是:發現鼓勵世界上具有數學天份的青少年,為各國進行科學教育交流創造條件,增進各國師生間的友好關系。
這一競賽1959年由東歐國家發起,得到聯合國教科文組織的資助;第一屆競賽由羅馬尼亞主辦,1959年7月22日至30日在布加勒斯特舉行,保加利亞、捷克斯洛伐克,匈牙利、波蘭、羅馬尼亞和蘇聯共7個國家參加競賽。
以後國際奧林匹克數學競賽都是每年7月舉行(中間只在1980年斷過一次),參賽國從1967年開始逐漸從東歐擴展到西歐、亞洲、美洲,最後擴大到全世界。2013年參加這項賽事的代表隊有80餘支。美國1974年參加競賽,中國1985年參加競賽。
經過40多年的發展,國際數學奧林匹克的運轉逐步制度化、規范化, 有了一整套約定俗成的常規,並為歷屆東道主所遵循。
國際奧林匹克數學競賽由參賽國輪流主辦,經費由東道國提供;但旅費由參賽國自理。參賽選手必須是不超過20歲的中學生,每支代表隊有學生6人;另派2名數學家為領隊。試題由各參賽國提供,然後由東道國精選後提交給主試委員會表決,產生6道試題。
東道國不提供試題。試題確定之後,寫成英、法、德、俄文等工作語言,由領隊譯成本國文字。主試委員會由各國的領隊及主辦國指定的主席組成。這個主席通常是該國的數學權威。
⑻ 關於數學速演算法
較快的加減乘除的速算推薦珠心算。當然也取決教的老師和學習者的個人領悟能力。
⑼ 如何教幼兒手指速演算法
手指速算可能讓孩子在幼兒時期可以很快算出100以內加減法,但是等到孩子上小學之後,很不容易擺脫手指。