導航:首頁 > 源碼編譯 > 演算法工程師面試如何准備

演算法工程師面試如何准備

發布時間:2023-08-14 12:16:25

① 都快2021年了,演算法崗位應該怎樣准備面試

說到演算法崗位,現在網上的第一反應可能就是內卷,演算法崗位也號稱是內卷最嚴重的崗位。針對這個問題,其實之前我也有寫過相關的文章。這個崗位競爭激烈不假,但我個人覺得稱作內卷有些過了。就我個人的感覺,這幾年的一個大趨勢是從迷茫走向清晰。

早在2015年我在阿里媽媽實習的時候,那個時候我覺得其實對於演算法工程師這個崗位的招聘要求甚至包括工作內容其實業內是沒有一個統一的標準的。可以認為包括各大公司其實對這個崗位具體的工作內容以及需要的候選人的能力要求都不太一致,不同的面試官有不同的風格,也有不同的標准。

我舉幾個例子,第一個例子是我當初實習面試的時候,因為是本科生,的確對機器學習這個領域了解非常非常少,可以說是幾乎沒有。但是我依然通過了,通過的原因也很簡單,因為有acm的獲獎背景,面試的過程當中主要也都是一些演算法題,都還算是答得不錯。但是在交叉面試的時候,一位另一個部門的總監就問我有沒有這塊的經驗?我很明確地說了,沒有,但是我願意學。

接著他告訴我,演算法工程師的工作內容主要和機器學習相關,因此機器學習是基本的。當時我就覺得我涼了,然而很意外地是還是通過了面試。

核心能力

由於我已經很久沒有接觸校招了,所以也很難說校招面試應該怎麼樣准備,只能說說如果是我來招聘,我會喜歡什麼樣的學生。也可以理解成我理解的一個合格優秀的演算法工程師應該有的能力。

模型理解

演算法工程師和模型打交道,那麼理解模型是必須的。其實不用說每一個模型都精通,這沒有必要,面試的時候問的模型也不一定用得到。但更多地是看重這個人在學習的時候的習慣,他是淺嘗輒止呢,還是會刨根究底,究竟能夠學到怎樣的地步。

在實際的工作當中我們可能會面臨各種各樣的情況,比如說新加了特徵但是沒有效果,比如升級了模型效果反而變差了等等,這些情況都是有可能發生的。當我們遇到這些情況之後,需要我們根據已知的信息來推理和猜測導致的原因從而針對性的採取相應的手段。因此這就需要我們對當前的模型有比較深入地了解,否則推導原因做出改進也就無從談起。

所以面試的時候問起哪個模型都不重要,重要的是你能不能體現出你有過深入的研究和理解。

數據分析

演算法工程師一直和數據打交道,那麼分析數據、清洗數據、做數據的能力也必不可少。說起來簡單的數據分析,這當中其實牽扯很多,簡單來說至少有兩個關鍵點。

第一個關鍵點是處理數據的能力,比如SQL、hive、spark、MapRece這些常用的數據處理的工具會不會,會多少?是一個都不會呢,還是至少會一點。由於各個公司的技術棧不同,一般不會抱著候選人必須剛好會和我們一樣的期待去招人,但是候選人如果一無所知肯定也是不行的。由於學生時代其實很少接觸這種實踐的內容,很多人對這些都一無所知,如果你會一兩個,其實就是加分項。

第二個關鍵點是對數據的理解力,舉個簡單的例子,比如說現在的樣本訓練了模型之後效果不好,我們要分析它的原因,你該怎麼下手?這個問題日常當中經常遇到,也非常考驗演算法工程師對數據的分析能力以及他的經驗。數據是水,模型是船,我們要把船駛向遠方,只懂船隻構造是不行的,還需要對水文、天象也有了解。這樣才能從數據當中捕捉到trick,對一些現象有更深入的看法和理解。

工程能力

雖然是演算法工程師,但是並不代表工程能力不重要,相反工程能力也很重要。當然這往往不會成為招聘的硬性指標, 比如考察你之前做過什麼工程項目之類的。但是會在你的代碼測試環節有所體現,你的代碼風格,你的編碼能力都是你面試的考察點之一。

並不只是在面試當中如此,在實際工作當中,工程能力也很關鍵。往小了說可以開發一些工具、腳本方便自己或者是團隊當中其他人的日常工作,往大了說,你也可以成為團隊當中的開發擔當,負責其團隊當中最工程的工作。比如說復現一篇paper,或者是從頭擼一個模型。這其實也是一種差異化競爭的手段,你合理地負擔起別人負擔不了的工作,那麼自然就會成為你的業績。

時代在變化,行業在發展,如今的校招會問些什麼早已經和當年不同了。但不管怎麼說,這個崗位以及面試官對於人才的核心訴求幾乎是沒有變過的,我們從核心出發去構建簡歷、准備面試,相信一定可以有所收獲。

② 諾瓦星雲演算法圖像工程師面試好過沒

好過。
1、諾瓦星雲演算法圖像工程師的面試首先是電話面試,回答一些基本問題。
2、然後是自我介紹和最後的反問,真正的面試時間就十幾分鍾,側重點在項目上,沒有關於通用能力的問題,所以好過。

③ 如何准備機器學習工程師的面試

機器學習方面的面試主要分成三個部分:
1. 演算法和理論基礎
2. 工程實現能力與編碼水平
3. 業務理解和思考深度

1. 理論方面,我推薦最經典的一本書《統計學習方法》,這書可能不是最全的,但是講得最精髓,薄薄一本,適合面試前突擊准備。

我認為一些要點是:
統計學習的核心步驟:模型、策略、演算法,你應當對logistic、SVM、決策樹、KNN及各種聚類方法有深刻的理解。能夠隨手寫出這些演算法的核心遞歸步的偽代碼以及他們優化的函數表達式和對偶問題形式。

非統計學習我不太懂,做過復雜網路,但是這個比較深,面試可能很難考到。

數學知識方面,你應當深刻理解矩陣的各種變換,尤其是特徵值相關的知識。

演算法方面:你應當深刻理解常用的優化方法:梯度下降、牛頓法、各種隨機搜索演算法(基因、蟻群等等),深刻理解的意思是你要知道梯度下降是用平面來逼近局部,牛頓法是用曲面逼近局部等等。

2. 工程實現能力與編碼水平
機器學習從工程實現一般來講都是某種數據結構上的搜索問題。

你應當深刻理解在1中列出的各種演算法對應應該採用的數據結構和對應的搜索方法。比如KNN對應的KD樹、如何給圖結構設計數據結構?如何將演算法map-red化等等。

一般來說要麼你會寫C,而且會用MPI,要麼你懂Hadoop,工程上基本都是在這兩個平台實現。實在不濟你也學個python吧。

3. 非常令人失望地告訴你盡管機器學習主要會考察1和2
但是實際工作中,演算法的先進性對真正業務結果的影響,大概不到30%。當然演算法必須要足夠快,離線演算法最好能在4小時內完成,實時演算法我沒搞過,要求大概
更高。

機器學習大多數場景是搜索、廣告、垃圾過濾、安全、推薦系統等等。對業務有深刻的理解對你做出來的系統的結果影響超過70%。這里你沒做過實際的項目,是
完全不可能有任何體會的,我做過一個推薦系統,沒有什麼演算法上的高大上的改進,主要是業務邏輯的創新,直接就提高了很明顯的一個CTR(具體數目不太方便
透露,總之很明顯就是了)。如果你做過實際的項目,一定要主動說出來,主動讓面試官知道,這才是最大最大的加分項目。

最後舉個例子,阿里內部機器學習挑戰賽,無數碾壓答主10000倍的大神參賽。最後冠軍沒有用任何高大上的演算法而是基於對數據和業務的深刻理解和極其細致
的特徵調優利用非常基本的一個演算法奪冠。所以啥都不如真正的實操擼幾個生產項目啊。

④ 想要從事演算法工程師,要掌握什麼

數據挖掘&分析:深度學習的應用能夠突飛猛進的一個重要原因就是大數據的支撐。當前獲取數據的成本很低,而數據清理和挖掘的成本很高,但非常重要。數據是模型的輸入,是模型能夠擬合的上限。

演算法策略:這是每位演算法工程師的硬實力,有了清晰的問題和可用的數據後,我們需要選擇合適的演算法策略求解問題。就銷量預估而言,由於特徵大部分都是表格型,樹模型及其變體成為首選的方案。通過樹模型,你能夠快速拿到一個不錯的baseline。

相關術語:

OCR:OCR(Optical Character Recognition,光學字元識別)是指電子設備(例如掃描儀或數碼相機)檢查紙上列印的字元,通過檢測暗、亮的模式確定其形狀,然後用字元識別方法將形狀翻譯成計算機文字的過程。

Matlab:商業數學軟體。

CUDA:(Compute Unified Device Architecture),是顯卡廠商NVIDIA推出的運算平台(由ISA和GPU構成)。CUDA是一種由NVIDIA推出的通用並行計算架構,該架構使GPU能夠解決復雜的計算問題。

OpenCL:OpenCL是一個為異構平台編寫程序的框架,此異構平台可由CPU,GPU或其他類型的處理器組成。

⑤ 如何面試演算法工程師

牆面是演算法工程師話你基本上你要有這個工程師的證,還有就是一些個人資料的簡歷證明

⑥ 百度計算機視覺演算法工程師面經(research 崗,已offer)

一面(技術面):
1、相機外參,相機內參
2、分水嶺演算法
3、目標檢測了解嗎
4、3D這塊有了解嗎
5、論文是你寫的嗎
6、介紹一下圖像分割
7、Deeplab v1, v2, v3, v3+
8、U-net後續改進
9、Non-local
10、經典三維重建公式
11、分割常用backbone

二面(技術面):
1、數據增強方法
2、dropout方法
3、圖像分割常見深度學習方法
4、簡單介紹一下三維重建項目,平行還是stereo,如何估計的depth map
5、deep lab v3與deep lab v3+的區別
6、深度可分離卷積介紹,輸入輸出,channel數
7、為什麼mobile net要用深度可分離卷積
8、數據集imbalance如何處理
9、常見的圖像分割損失函數
10、iou能作為損失函數嗎
11、linux 下shell命令行開發熟悉嗎
12、組里以發論文為主,寫論文的意願
13、相機內外參
14、現在大幾,可實習到什麼時候
15、希望自驅性比較高

三面(hr面)
因為是日常實習崗不是校招所以沒有...

總結
二次面試過程中我都有些太隨意了,有過一些打斷面試小姐姐說話的舉動,謝謝說的比較少,中間不舒服還活動了下嗓子...還好問的問題比較簡單最後過了。

⑦ 工作二年以上的程序員前輩如何准備面試

做一份工作,實際就是追尋夢想的過程,而為了完成夢想,必須有一個長期規劃,從而指導我們選擇工作。它是擇業過程中最本質和最原始的參考借鑒

閱讀全文

與演算法工程師面試如何准備相關的資料

熱點內容
能否給隱藏相冊加密 瀏覽:596
糖心app改什麼名 瀏覽:823
戰地1控伺服器如何部署 瀏覽:394
xp還原系統輸入命令 瀏覽:323
mysql命令行版本 瀏覽:303
如何進入itunes找文件夾 瀏覽:832
CAD中重復命令使用 瀏覽:477
心智pdf 瀏覽:475
網站電台直播間源碼 瀏覽:852
文件夾14c和18c的區別 瀏覽:34
android隱式調用 瀏覽:667
plc的編程指令邊沿繼電器 瀏覽:723
voc文件夾 瀏覽:865
租廣東聯通伺服器注意什麼雲空間 瀏覽:934
javascript高級程序設計pdf 瀏覽:292
pwm單片機原理 瀏覽:348
ai演算法在線修復圖片 瀏覽:982
scratch編程中如何做射擊游戲 瀏覽:479
at89c51編程器 瀏覽:344
項目經理叫醒程序員 瀏覽:344