導航:首頁 > 源碼編譯 > dlt演算法

dlt演算法

發布時間:2023-08-15 01:22:04

❶ 無人駕駛(三)行人跟蹤演算法

姓名:王夢妮

學號:20021210873

學院:電子工程學院

【嵌牛導讀】本文主要介紹了無人駕駛中所需的拿肢行人跟蹤演算法

【嵌牛鼻子】無人駕駛 環境感知 計算機視覺 卡爾曼濾波 粒子濾波 均值漂移

【嵌牛提問】無人駕駛中所用到的行人跟蹤演算法有哪些

【嵌牛正文】

行人跟蹤一直是視覺領域的一個難點,實際應用環境復雜、遮擋以及行人姿態變化等外界因素都影響著行人跟蹤演算法的研究。行人跟蹤演算法模型主要分為生成模型和判別模型。

(一)生成式模型

生成式模型是一種通過在線學習行人目標特徵,建立行人跟蹤模型,然後使用模型來搜索誤差最小的目標區域,從而完成對行人的跟蹤。這種演算法在構建模型只考慮了行人本身的特徵,忽略了背景信息,沒有做到有效利用圖像中的全部信息。其中比較經典的演算法主要有卡爾曼濾波,粒子濾波,mean-shift等。

(1)卡爾曼濾波演算法

卡爾曼濾波演算法是一種通過對行人構建狀態方程和觀測方程為基礎,計算最小均方誤差來實現跟蹤的最優線性遞歸濾波演算法,通過遞歸行人的運動狀態來預測行人軌跡的變化。

首先設定初始參數,讀取視頻序列。然後進行背景估計,產生初始化背景圖像。然後依次讀取視頻序列,利用Kahnan濾波演算法,根據上一幀估計的背景和當前幀數據得到當前幀的前景目標。然後對前景目標進行連通計算,檢測出運動目標的軌跡。經典的卡爾曼濾波演算法.只能對線性運動的行人實現跟蹤,之後學者改進了卡爾曼濾波演算法,能夠實現對非線性運動的行人進行跟蹤,計算量小,能實現實時跟蹤,但是跟蹤效果不理想。

(2)粒子濾波

    粒子濾波的核心就是貝葉斯推理和重要性采樣。粒子濾波可用於非線性非高斯模型,這是由於貝葉斯推理採用蒙特卡洛法,以某個時間點事件出現的頻率表示其概率。通過一組粒子消宴世對整個模型的後驗概率分布進行近似的表示,通過這個表示來估計整個非線性非高斯系統的狀態。重要性採用就是通過粒子的置信度來賦予不同的權重,置信度高的粒子,賦予較大的權重,通過權重的分布形式表示相似程度。

(3)均值漂移(mean-shift)

    Mean-shift演算法屬於核密度估計法。不必知道先驗概率,密度函數值由采樣點的特徵空間計算。通過計算當前幀目標區域的像素特徵值概率來描述目標模型,並對候選區域進行統一描述,使用相似的函數表示目標模型與候選模板之間的相似度,然後選擇在具有相似函數值最大的候選模型中,您將獲得關於目標模型的均值漂移向量,該向量表示目標從當前位置移動到下一個位置的向量。通過連續迭代地計算均值偏移矢量,行人跟蹤演算法將最終收斂到行人的實際位置,從而實現行人跟蹤。

(二) 判別式模型

判別模型與生成模型不同,行人跟蹤被視為二分類問題。提取圖像中的行人和背景信息,並用於訓練分類器。通過分類將行人從圖像背景中分離出來,以獲取行人的當前位置。以行人區域為正樣本,背景區域為負樣本,通過機器學習演算法對正樣本和負樣本進行訓練,訓練後的分類器用於在下一幀中找到相似度最高的區域,以完成行人軌跡更新。判別式模型不像生成式模型僅僅利用了行人的信息,還利用了背景信息,因此判別式模型的跟蹤效果普遍優於生成式模型。

(1)基於相關濾波的跟蹤演算法

      核相關濾波(KCF)演算法是基於相關濾波的經典跟蹤演算法,具有優良的跟蹤效果和跟蹤速度。這是由於其採用了循環移位的方式來進行樣本生產,用生成的樣本來訓練分類器,通過高斯核函數來計算當前幀行人與下一幀中所有候選目標之間的相似概率圖,找到相似概率圖最大的那個候選目標,就得到了行人的新位置。KCF演算法為了提高跟蹤精度,使用HOG特徵對行人進行描述,同時結合了離散傅里葉變換來降低計算量。

(2)基於深度學習的跟蹤演算法

    近年來,深度學習在圖像和語音方面取得了較大的成果,因此有許多科研人員將深度學習與行人跟蹤相結合,取得了比傳統跟蹤演算法更好的性能。DLT就是一個基於深度學習的行人跟蹤演算法,利用深度模型自動編碼器通過離線訓練的方式,在大規模行人數據集上得到一個行人模型,然後在線對行人進行跟蹤來微調模型。首先通過粒子濾波獲取候選行人目標,然後利用自動編碼器進行預測,最終得到行人的預測位置即最大輸出值的候選行人目標位置。2015年提出的MDNet演算法採用了分域訓練的方式祥森。對於每個類別,一個單獨的全連接層用於分類,並且全連接層前面的所有層都是共享,用於特徵提取。2017年提出的HCFT演算法使用深度學習對大量標定數據進行訓練,得到強有力的特徵表達模型,結合基於相關濾波的跟蹤演算法,用於解決在線進行跟蹤過程中行人樣本少、網路訓練不充分的問題。此外,通過深度學習提取特徵,利用數據關聯的方法來實現跟蹤的演算法,其中最為著名的就JPDAF與MHT這兩種方法。

❷ 演算法的四種描述方法是什麼

#include<stdio.h>
#include<time.h>
#include<math.h>
#include<malloc.h>

void BubbleSort(int *L,int N)
{ //冒泡
int i,j;
int t;

for(i=1;i<=N;i++)
{
for(j=N;j>i;j--)
if(L[j]<L[j-1])
{
t=L[j];
L[j]=L[j-1];
L[j-1]=t;
}
}
}

int SelectMinKey(int *L,int N,int n)
{
int i,min=n;

for(i=n+1;i<=N;i++)
if(L[i]<L[min])
min=i;

return min;
}

void SelectSort(int *L,int N)
{ //選擇
int i,j;
int t;

for(i=1;i<N;i++)
{
j=SelectMinKey(L,N,i);
if(i!=j)
{
t=L[i];
L[i]=L[j];
L[j]=t;
}
}
}

void InsertSort(int *L,int N)
{ //插入
int i,j;

for(i=2;i<=N;i++)
{
if(L[i]<L[i-1])
{
L[0]=L[i];
L[i]=L[i-1];
for(j=i-2;L[0]<L[j];j--)
L[j+1]=L[j];
L[j+1]=L[0];
}
}
}

void ShellInsert(int *L,int N, int dk)
{ // 對順序表L作一趟希爾插入排序。本演算法對演算法10.1作了以下修改:
// 1. 前後記錄位置的增量是dk,而不是1;
// 2. r[0]只是暫存單元,不是哨兵。當j<=0時,插入位置已找到。
int i,j;
for(i=dk+1;i<=N;++i)
if(L[i]<L[i-dk])
{ // 需將L.r[i]插入有序增量子表
L[0]=L[i]; // 暫存在L.r[0]
for(j=i-dk;(j>0&&L[0]<L[j]);j-=dk)
L[j+dk]=L[j]; // 記錄後移,查找插入位置
L[j+dk]=L[0]; // 插入
}
} // ShellInsert

void ShellSt(int *L,int N, int dlta[], int t)
{ // 演算法10.5
// 按增量序列dlta[0..t-1]對順序表L作希爾排序。
for(int k=0;k<t;++k)
ShellInsert(L,N, dlta[k]); // 一趟增量為dlta[k]的插入排序
} // ShellSort

void ShellSort(int *L,int N)
{ //希爾
int t=(int)log(N);
int k,*dlta;

dlta=(int*)malloc(t*4); //產生增量序列
for(k=0;k<t;k++)
dlta[k]=(int)pow(2,t-k)-1;

ShellSt(L,N,dlta,t);
}

int main()
{
int N=250;
int i,j,k;
int t;
int ti[16];
int *L;

srand(time(NULL));

printf("長度\t|冒泡\t|選擇\t|插入\t|希爾\n");
printf("--------+-------------------------------------------------------------");
for(j=0;N<100000;j++)
{
L=(int *)malloc((N+1)*4);

t=0;

for(i=1;i<=N;i++)
L[i]=rand();
ti[t++]=clock();
BubbleSort(L,N);
ti[t++]=clock();

for(i=1;i<=N;i++)
L[i]=rand();
ti[t++]=clock();
SelectSort(L,N);
ti[t++]=clock();

for(i=1;i<=N;i++)
L[i]=rand();
ti[t++]=clock();
InsertSort(L,N);
ti[t++]=clock();

for(i=1;i<=N;i++)
L[i]=rand();
ti[t++]=clock();
ShellSort(L,N);
ti[t++]=clock();

printf("\n%d\t",N);
for(k=0;k<4;k++)
printf("| %d\t",(ti[2*k+1]-ti[2*k]));

N*=5;
}
printf("\n\n");
}

//這是我們當年學數據結構時我自己寫的,給你改了一下,輸出是對隨機產生一些數,對四種演算法進行比較,有問題可以hi我啊
另外,站長團上有產品團購,便宜有保證

❸ 計算機視覺領域主流的演算法和方向有哪些

人工智慧是當下很火熱的話題,其與大數據的完美結合應用於多個場景,極大的方便了人類的生活。而人工智慧又包含深度學習和機器學習兩方面的內容。深度學習又以計算機視覺和自然語言處理兩個方向發展的最好,最火熱。大家對於自然語言處理的接觸可能不是很多,但是說起計算機視覺,一定能夠馬上明白,因為我們每天接觸的刷臉支付等手段就會和計算機視覺掛鉤。可以說計算機視覺的應用最為廣泛。

目標跟蹤,就是在某種場景下跟蹤特定對象的過程,在無人駕駛領域中有很重要的應用。目前較為流行的目標跟蹤演算法是基於堆疊自動編碼器的DLT。語義分割,則是將圖像分為像素組,再進行標記和分類。目前的主流演算法都使用完全卷積網路的框架。實例分割,是指將不同類型的實例分類,比如用4種不同顏色來標記4隻貓。目前用於實例分割的主流演算法是Mask R-CNN。

❹ C語言排序

//總共給你整理了7種排序演算法:希爾排序,鏈式基數排序,歸並排序
//起泡排序,簡單選擇排序,樹形選擇排序,堆排序,先自己看看吧,
//看不懂可以再問身邊的人或者查資料,既然可以上網,我相信你所在的地方信息流通方式應該還行,所有的程序全部在VC++6.0下編譯通過
//希爾排序
#include<stdio.h>
typedef int InfoType; // 定義其它數據項的類型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};

struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
void ShellInsert(SqList &L,int dk)
{ // 對順序表L作一趟希爾插入排序。本演算法是和一趟直接插入排序相比,
// 作了以下修改:
// 1.前後記錄位置的增量是dk,而不是1;
// 2.r[0]只是暫存單元,不是哨兵。當j<=0時,插入位置已找到。演算法10.4
int i,j;
for(i=dk+1;i<=L.length;++i)
if LT(L.r[i].key,L.r[i-dk].key)
{ // 需將L.r[i]插入有序增量子表
L.r[0]=L.r[i]; // 暫存在L.r[0]
for(j=i-dk;j>0&<(L.r[0].key,L.r[j].key);j-=dk)
L.r[j+dk]=L.r[j]; // 記錄後移,查找插入位置
L.r[j+dk]=L.r[0]; // 插入
}
}

void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("%d ",L.r[i].key);
printf("\n");
}

void print1(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}

void ShellSort(SqList &L,int dlta[],int t)
{ // 按增量序列dlta[0..t-1]對順序表L作希爾排序。演算法10.5
int k;
for(k=0;k<t;++k)
{
ShellInsert(L,dlta[k]); // 一趟增量為dlta[k]的插入排序
printf("第%d趟排序結果: ",k+1);
print(L);
}
}

#define N 10
#define T 3
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8},{55,9},{4,10}};
SqList l;
int dt[T]={5,3,1}; // 增量序列數組
for(int i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前: ");
print(l);
ShellSort(l,dt,T);
printf("排序後: ");
print1(l);
}

/*****************************************************************/
//鏈式基數排序
typedef int InfoType; // 定義其它數據項的類型
typedef int KeyType; // 定義RedType類型的關鍵字為整型
struct RedType // 記錄類型(同c10-1.h)
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項
};
typedef char KeysType; // 定義關鍵字類型為字元型
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函數結果狀態代碼
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status; // Status是函數的類型,其值是函數結果狀態代碼,如OK等
typedef int Boolean; // Boolean是布爾類型,其值是TRUE或FALSE
#define MAX_NUM_OF_KEY 8 // 關鍵字項數的最大值
#define RADIX 10 // 關鍵字基數,此時是十進制整數的基數
#define MAX_SPACE 1000
struct SLCell // 靜態鏈表的結點類型
{
KeysType keys[MAX_NUM_OF_KEY]; // 關鍵字
InfoType otheritems; // 其它數據項
int next;
};

struct SLList // 靜態鏈表類型
{
SLCell r[MAX_SPACE]; // 靜態鏈表的可利用空間,r[0]為頭結點
int keynum; // 記錄的當前關鍵字個數
int recnum; // 靜態鏈表的當前長度
};

typedef int ArrType[RADIX];
void InitList(SLList &L,RedType D[],int n)
{ // 初始化靜態鏈表L(把數組D中的數據存於L中)
char c[MAX_NUM_OF_KEY],c1[MAX_NUM_OF_KEY];
int i,j,max=D[0].key; // max為關鍵字的最大值
for(i=1;i<n;i++)
if(max<D[i].key)
max=D[i].key;
L.keynum=int(ceil(log10(max)));
L.recnum=n;
for(i=1;i<=n;i++)
{
L.r[i].otheritems=D[i-1].otherinfo;
itoa(D[i-1].key,c,10); // 將10進制整型轉化為字元型,存入c
for(j=strlen(c);j<L.keynum;j++) // 若c的長度<max的位數,在c前補'0'
{
strcpy(c1,"0");
strcat(c1,c);
strcpy(c,c1);
}
for(j=0;j<L.keynum;j++)
L.r[i].keys[j]=c[L.keynum-1-j];
}
}

int ord(char c)
{ // 返回k的映射(個位整數)
return c-'0';
}

void Distribute(SLCell r[],int i,ArrType f,ArrType e) // 演算法10.15
{ // 靜態鍵表L的r域中記錄已按(keys[0],…,keys[i-1])有序。本演算法按
// 第i個關鍵字keys[i]建立RADIX個子表,使同一子表中記錄的keys[i]相同。
// f[0..RADIX-1]和e[0..RADIX-1]分別指向各子表中第一個和最後一個記錄
int j,p;
for(j=0;j<RADIX;++j)
f[j]=0; // 各子表初始化為空表
for(p=r[0].next;p;p=r[p].next)
{
j=ord(r[p].keys[i]); // ord將記錄中第i個關鍵字映射到[0..RADIX-1]
if(!f[j])
f[j]=p;
else
r[e[j]].next=p;
e[j]=p; // 將p所指的結點插入第j個子表中
}
}

int succ(int i)
{ // 求後繼函數
return ++i;
}

void Collect(SLCell r[],ArrType f,ArrType e)
{ // 本演算法按keys[i]自小至大地將f[0..RADIX-1]所指各子表依次鏈接成
// 一個鏈表,e[0..RADIX-1]為各子表的尾指針。演算法10.16
int j,t;
for(j=0;!f[j];j=succ(j)); // 找第一個非空子表,succ為求後繼函數
r[0].next=f[j];
t=e[j]; // r[0].next指向第一個非空子表中第一個結點
while(j<RADIX-1)
{
for(j=succ(j);j<RADIX-1&&!f[j];j=succ(j)); // 找下一個非空子表
if(f[j])
{ // 鏈接兩個非空子表
r[t].next=f[j];
t=e[j];
}
}
r[t].next=0; // t指向最後一個非空子表中的最後一個結點
}

void printl(SLList L)
{ // 按鏈表輸出靜態鏈表
int i=L.r[0].next,j;
while(i)
{
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.r[i].keys[j]);
printf(" ");
i=L.r[i].next;
}
}

void RadixSort(SLList &L)
{ // L是採用靜態鏈表表示的順序表。對L作基數排序,使得L成為按關鍵字
// 自小到大的有序靜態鏈表,L.r[0]為頭結點。演算法10.17
int i;
ArrType f,e;
for(i=0;i<L.recnum;++i)
L.r[i].next=i+1;
L.r[L.recnum].next=0; // 將L改造為靜態鏈表
for(i=0;i<L.keynum;++i)
{ // 按最低位優先依次對各關鍵字進行分配和收集
Distribute(L.r,i,f,e); // 第i趟分配
Collect(L.r,f,e); // 第i趟收集
printf("第%d趟收集後:\n",i+1);
printl(L);
printf("\n");
}
}

void print(SLList L)
{ // 按數組序號輸出靜態鏈表
int i,j;
printf("keynum=%d recnum=%d\n",L.keynum,L.recnum);
for(i=1;i<=L.recnum;i++)
{
printf("keys=");
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.r[i].keys[j]);
printf(" otheritems=%d next=%d\n",L.r[i].otheritems,L.r[i].next);
}
}

void Sort(SLList L,int adr[]) // 改此句(類型)
{ // 求得adr[1..L.length],adr[i]為靜態鏈表L的第i個最小記錄的序號
int i=1,p=L.r[0].next;
while(p)
{
adr[i++]=p;
p=L.r[p].next;
}
}

void Rearrange(SLList &L,int adr[]) // 改此句(類型)
{ // adr給出靜態鏈表L的有序次序,即L.r[adr[i]]是第i小的記錄。
// 本演算法按adr重排L.r,使其有序。演算法10.18(L的類型有變)
int i,j,k;
for(i=1;i<L.recnum;++i) // 改此句(類型)
if(adr[i]!=i)
{
j=i;
L.r[0]=L.r[i]; // 暫存記錄L.r[i]
while(adr[j]!=i)
{ // 調整L.r[adr[j]]的記錄到位直到adr[j]=i為止
k=adr[j];
L.r[j]=L.r[k];
adr[j]=j;
j=k; // 記錄按序到位
}
L.r[j]=L.r[0];
adr[j]=j;
}
}

#define N 10
void main()
{
RedType d[N]={{278,1},{109,2},{63,3},{930,4},{589,5},{184,6},{505,7},{269,8},{8,9},{83,10}};
SLList l;
int *adr;
InitList(l,d,N);
printf("排序前(next域還沒賦值):\n");
print(l);
RadixSort(l);
printf("排序後(靜態鏈表):\n");
print(l);
adr=(int*)malloc((l.recnum)*sizeof(int));
Sort(l,adr);
Rearrange(l,adr);
printf("排序後(重排記錄):\n");
print(l);
}
/*******************************************/
//歸並排序
#include<stdio.h>
typedef int InfoType; // 定義其它數據項的類型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};

struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
void Merge(RedType SR[],RedType TR[],int i,int m,int n)
{ // 將有序的SR[i..m]和SR[m+1..n]歸並為有序的TR[i..n] 演算法10.12
int j,k,l;
for(j=m+1,k=i;i<=m&&j<=n;++k) // 將SR中記錄由小到大地並入TR
if LQ(SR[i].key,SR[j].key)
TR[k]=SR[i++];
else
TR[k]=SR[j++];
if(i<=m)
for(l=0;l<=m-i;l++)
TR[k+l]=SR[i+l]; // 將剩餘的SR[i..m]復制到TR
if(j<=n)
for(l=0;l<=n-j;l++)
TR[k+l]=SR[j+l]; // 將剩餘的SR[j..n]復制到TR
}

void MSort(RedType SR[],RedType TR1[],int s, int t)
{ // 將SR[s..t]歸並排序為TR1[s..t]。演算法10.13
int m;
RedType TR2[MAXSIZE+1];
if(s==t)
TR1[s]=SR[s];
else
{
m=(s+t)/2; // 將SR[s..t]平分為SR[s..m]和SR[m+1..t]
MSort(SR,TR2,s,m); // 遞歸地將SR[s..m]歸並為有序的TR2[s..m]
MSort(SR,TR2,m+1,t); // 遞歸地將SR[m+1..t]歸並為有序的TR2[m+1..t]
Merge(TR2,TR1,s,m,t); // 將TR2[s..m]和TR2[m+1..t]歸並到TR1[s..t]
}
}

void MergeSort(SqList &L)
{ // 對順序表L作歸並排序。演算法10.14
MSort(L.r,L.r,1,L.length);
}

void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}

#define N 7
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
MergeSort(l);
printf("排序後:\n");
print(l);
}
/**********************************************/
//起泡排序
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函數結果狀態代碼
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status;
typedef int Boolean;
#define N 8
void bubble_sort(int a[],int n)
{ // 將a中整數序列重新排列成自小至大有序的整數序列(起泡排序)
int i,j,t;
Status change;
for(i=n-1,change=TRUE;i>1&&change;--i)
{
change=FALSE;
for(j=0;j<i;++j)
if(a[j]>a[j+1])
{
t=a[j];
a[j]=a[j+1];
a[j+1]=t;
change=TRUE;
}
}
}

void print(int r[],int n)
{
int i;
for(i=0;i<n;i++)
printf("%d ",r[i]);
printf("\n");
}

void main()
{
int d[N]={49,38,65,97,76,13,27,49};
printf("排序前:\n");
print(d,N);
bubble_sort(d,N);
printf("排序後:\n");
print(d,N);
}
/****************************************************/
//簡單選擇排序
#include<stdio.h>
typedef int InfoType; // 定義其它數據項的類型
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};

struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
int SelectMinKey(SqList L,int i)
{ // 返回在L.r[i..L.length]中key最小的記錄的序號
KeyType min;
int j,k;
k=i; // 設第i個為最小
min=L.r[i].key;
for(j=i+1;j<=L.length;j++)
if(L.r[j].key<min) // 找到更小的
{
k=j;
min=L.r[j].key;
}
return k;
}

void SelectSort(SqList &L)
{ // 對順序表L作簡單選擇排序。演算法10.9
int i,j;
RedType t;
for(i=1;i<L.length;++i)
{ // 選擇第i小的記錄,並交換到位
j=SelectMinKey(L,i); // 在L.r[i..L.length]中選擇key最小的記錄
if(i!=j)
{ // 與第i個記錄交換
t=L.r[i];
L.r[i]=L.r[j];
L.r[j]=t;
}
}
}

void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}

#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
SelectSort(l);
printf("排序後:\n");
print(l);
}
/************************************************/
//樹形選擇排序
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函數結果狀態代碼
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status; // Status是函數的類型,其值是函數結果狀態代碼,如OK等
typedef int Boolean; // Boolean是布爾類型,其值是TRUE或FALSE
typedef int InfoType; // 定義其它數據項的類型
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};

struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
void TreeSort(SqList &L)
{ // 樹形選擇排序
int i,j,j1,k,k1,l,n=L.length;
RedType *t;
l=(int)ceil(log(n)/log(2))+1; // 完全二叉樹的層數
k=(int)pow(2,l)-1; // l層完全二叉樹的結點總數
k1=(int)pow(2,l-1)-1; // l-1層完全二叉樹的結點總數
t=(RedType*)malloc(k*sizeof(RedType)); // 二叉樹採用順序存儲結構
for(i=1;i<=n;i++) // 將L.r賦給葉子結點
t[k1+i-1]=L.r[i];
for(i=k1+n;i<k;i++) // 給多餘的葉子的關鍵字賦無窮大
t[i].key=INT_MAX;
j1=k1;
j=k;
while(j1)
{ // 給非葉子結點賦值
for(i=j1;i<j;i+=2)
t[i].key<t[i+1].key?(t[(i+1)/2-1]=t[i]):(t[(i+1)/2-1]=t[i+1]);
j=j1;
j1=(j1-1)/2;
}
for(i=0;i<n;i++)
{
L.r[i+1]=t[0]; // 將當前最小值賦給L.r[i]
j1=0;
for(j=1;j<l;j++) // 沿樹根找結點t[0]在葉子中的序號j1
t[2*j1+1].key==t[j1].key?(j1=2*j1+1):(j1=2*j1+2);
t[j1].key=INT_MAX;
while(j1)
{
j1=(j1+1)/2-1; // 序號為j1的結點的雙親結點序號
t[2*j1+1].key<=t[2*j1+2].key?(t[j1]=t[2*j1+1]):(t[j1]=t[2*j1+2]);
}
}
free(t);
}

void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}

#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
TreeSort(l);
printf("排序後:\n");
print(l);
}
/****************************/
//堆排序
#include<stdio.h>
typedef int InfoType; // 定義其它數據項的類型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};

struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};

typedef SqList HeapType; // 堆採用順序表存儲表示
void HeapAdjust(HeapType &H,int s,int m) // 演算法10.10
{ // 已知H.r[s..m]中記錄的關鍵字除H.r[s].key之外均滿足堆的定義,本函數
// 調整H.r[s]的關鍵字,使H.r[s..m]成為一個大頂堆(對其中記錄的關鍵字而言)
RedType rc;
int j;
rc=H.r[s];
for(j=2*s;j<=m;j*=2)
{ // 沿key較大的孩子結點向下篩選
if(j<m&<(H.r[j].key,H.r[j+1].key))
++j; // j為key較大的記錄的下標
if(!LT(rc.key,H.r[j].key))
break; // rc應插入在位置s上
H.r[s]=H.r[j];
s=j;
}
H.r[s]=rc; // 插入
}

void HeapSort(HeapType &H)
{ // 對順序表H進行堆排序。演算法10.11
RedType t;
int i;
for(i=H.length/2;i>0;--i) // 把H.r[1..H.length]建成大頂堆
HeapAdjust(H,i,H.length);
for(i=H.length;i>1;--i)
{ // 將堆頂記錄和當前未經排序子序列H.r[1..i]中最後一個記錄相互交換
t=H.r[1];
H.r[1]=H.r[i];
H.r[i]=t;
HeapAdjust(H,1,i-1); // 將H.r[1..i-1]重新調整為大頂堆
}
}

void print(HeapType H)
{
int i;
for(i=1;i<=H.length;i++)
printf("(%d,%d)",H.r[i].key,H.r[i].otherinfo);
printf("\n");
}

#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
HeapType h;
int i;
for(i=0;i<N;i++)
h.r[i+1]=d[i];
h.length=N;
printf("排序前:\n");
print(h);
HeapSort(h);
printf("排序後:\n");
print(h);
}

閱讀全文

與dlt演算法相關的資料

熱點內容
能否給隱藏相冊加密 瀏覽:596
糖心app改什麼名 瀏覽:823
戰地1控伺服器如何部署 瀏覽:394
xp還原系統輸入命令 瀏覽:323
mysql命令行版本 瀏覽:303
如何進入itunes找文件夾 瀏覽:832
CAD中重復命令使用 瀏覽:477
心智pdf 瀏覽:475
網站電台直播間源碼 瀏覽:852
文件夾14c和18c的區別 瀏覽:34
android隱式調用 瀏覽:667
plc的編程指令邊沿繼電器 瀏覽:723
voc文件夾 瀏覽:865
租廣東聯通伺服器注意什麼雲空間 瀏覽:934
javascript高級程序設計pdf 瀏覽:292
pwm單片機原理 瀏覽:348
ai演算法在線修復圖片 瀏覽:982
scratch編程中如何做射擊游戲 瀏覽:479
at89c51編程器 瀏覽:344
項目經理叫醒程序員 瀏覽:344