① 易語言靜態配置編譯器是干什麼的
易語言沒有自己的編譯器,但他用的是VC的編譯器。
非靜態編譯:
易語言因為沒有自己的靜態編譯器,如果不使用別人的編譯器,你編譯出去的軟體,將會把你軟體用到的函數和命令所屬的支持庫,DLL等...都編譯進軟體 或 軟體同目錄,即使你不是用到庫的全部命令,也會被把所有用到命令的很多支持庫,整庫編譯進去,這樣導致了軟體體積巨大,還會影響軟體效率。。
靜態編譯:
易語言因沒有自己的靜態編譯器,所以用的是VC的編譯器。使用靜態編譯的好處就是,當你調用了很多庫裡面的命令時候,不需要把這么多庫都帶上編譯出去。靜態編譯可以讓他從庫中脫離出來,只編譯被調用到的命令部分。這樣減輕了軟體的體積負擔 和 運行效率。。。
現在明白了吧!呵呵!記得採納哦!!
② 編譯器做什麼工作
1. 詞法分析 詞法分析器根據詞法規則識別出源程序中的各個記號(token),每個記號代表一類單詞(lexeme)。源程序中常見的記號可以歸為幾大類:關鍵字、標識符、字面量和特殊符號。詞法分析器的輸入是源程序,輸出是識別的記號流。詞法分析器的任務是把源文件的字元流轉換成記號流。本質上它查看連續的字元然後把它們識別為「單詞」。 2. 語法分析 語法分析器根據語法規則識別出記號流中的結構(短語、句子),並構造一棵能夠正確反映該結構的語法樹。 3. 語義分析 語義分析器根據語義規則對語法樹中的語法單元進行靜態語義檢查,如果類型檢查和轉換等,其目的在於保證語法正確的結構在語義上也是合法的。 4. 中間代碼生成 中間代碼生成器根據語義分析器的輸出生成中間代碼。中間代碼可以有若干種形式,它們的共同特徵是與具體機器無關。最常用的一種中間代碼是三地址碼,它的一種實現方式是四元式。三地址碼的優點是便於閱讀、便於優化。 5. 中間代碼優化 優化是編譯器的一個重要組成部分,由於編譯器將源程序翻譯成中間代碼的工作是機械的、按固定模式進行的,因此,生成的中間代碼往往在時間和空間上有很大浪費。當需要生成高效目標代碼時,就必須進行優化。 6. 目標代碼生成 目標代碼生成是編譯器的最後一個階段。在生成目標代碼時要考慮以下幾個問題:計算機的系統結構、指令系統、寄存器的分配以及內存的組織等。編譯器生成的目標程序代碼可以有多種形式:匯編語言、可重定位二進制代碼、內存形式。 7 符號表管理 符號表的作用是記錄源程序中符號的必要信息,並加以合理組織,從而在編譯器的各個階段能對它們進行快速、准確的查找和操作。符號表中的某些內容甚至要保留到程序的運行階段。 8 出錯處理用戶編寫的源程序中往往會有一些錯誤,可分為靜態錯誤和動態錯誤兩類。所謂動態錯誤,是指源程序中的邏輯錯誤,它們發生在程序運行的時候,也被稱作動態語義錯誤,如變數取值為零時作為除數,數組元素引用時下標出界等。靜態錯誤又可分為語法錯誤和靜態語義錯誤。語法錯誤是指有關語言結構上的錯誤,如單詞拼寫錯、表達式中缺少操作數、begin和end不匹配等。靜態語義錯誤是指分析源程序時可以發現的語言意義上的錯誤,如加法的兩個操作數中一個是整型變數名,而另一個是數組名等。
③ 單片機內部基本原理 bin文件如何跑起來 編譯器做了什麼
無論是單片機還是cpu內部主要有三種部件 ALU 控制器 寄存器。
這個要從編譯器開始講起,編譯器會給你編寫的軟體增加一個頭部,無論是MDK還是IAR等等,這個頭部是做了什麼工作那?頭部主要利用單片機寄存器上電後從FLASH將全局變數以及全局未初始化變數搬移倒RAM,增加堆棧 復位 中斷向量表 才開始從flash讀取你編寫的程序,因為編譯器已經把程序整個編碼為機器碼放在flash,有不太了解機器碼的可以再去了解,機器碼主要是運算加減搬移的那些操作,只不過單片機它就認識了。
單片機內部的控制器讀取flash的機器碼,通過內部R0-R15做數據中轉和RAM交換數據,通過ALU做運算,ALU非常擅長做邏輯的運算,寄存器是存放需要暫存處理的數據,使得它跑了起來。
編譯器----編譯器的程序----bin文件----機器碼----運行
④ 什麼是編譯程序
編譯程序(Compiler,compiling program),也稱為編譯器,是指把用高級程序設計語言書寫的源程序,翻譯成等價的機器語言格式目標程序的翻譯程序。編譯程序屬於採用生成性實現途徑實現的翻譯程序。
它以高級程序設計語言書寫的源程序作為輸入,而以匯編語言或機器語言表示的目標程序作為輸出。編譯出的目標程序通常還要經歷運行階段,以便在運行程序的支持下運行,加工初羨土豆始數據,算出所需的計算結果。
編譯兄汪程序的特點
編譯程序必須分析源程序,然後綜合成目標程序。首先,檢查源程序的正確性,並把它分解成若干基本成分;其次,再根據這些基本成分建立相應等價的目標程序部分。為了完成這些工作,編譯程序要在分析階段建立一些表格,改造源程序為中間語言形式,以便在分析和綜合時易於手搜引用和加工。
⑤ java虛擬機和java編譯器是什麼關系和區別 他倆分別是干什麼的
編譯器就是把java源代碼編譯成位元組碼。java不生成exe的,保證了跨平台性。這個位元組碼就可以運行在java的虛擬機上java virtual machine
⑥ 現代C/C++編譯器有多智能
最近在搞C/C++代碼的性能優化,發現很多時候自以為的優化其實編譯器早就優化過了,得結合反匯編才能看出到底要做什麼樣的優化。
請熟悉編譯器的同學結合操作系統和硬體談一談現代c/c++編譯器到底有多智能吧。哪些書本上的優化方法其實早就過時了?
以及程序員做什麼會讓編譯器能更好的自動優化代碼?
舉個栗子:
1,循環展開,大部分編譯器設置flag後會自動展開;
2,順序SIMD優化,大部分編譯器設置flag後也會自動優化成SIMD指令;
3,減少中間變數,大部分編譯器會自動優化掉中間變數;
etc.
查看代碼對應的匯編:
Compiler Explorer
【以下解答】
舉個之前看過的例子:
int calc_hash(signed char *s){ static const int N = 100003; int ret = 1; while (*s) { ret = ret * 131 + *s; ++ s; } ret %= N; if (ret < 0) ret += N; //注意這句 return ret;}
【以下解答】
舉個簡單例子,一到一百求和
#include int sum() { int ret= 0; int i; for(i = 1; i <= 100; i++) ret+=i; return ret;}int main() { printf("%d\n", sum()); return 0;}
【以下解答】
話題太大,碼字花時間…
先放傳送門好了。
請看Google的C++編譯器組老大Chandler Carruth的演講。這個演講是從編譯器研發工程師的角度出發,以Clang/LLVM編譯C++為例,向一般C++程序員介紹理解編譯器優化的思維模型。它講解了C++編譯器會做的一些常見優化,而不會深入到LLVM具體是如何實現這些優化的,所以即使不懂編譯原理的C++程序員看這個演講也不會有壓力。
Understanding Compiler Optimization - Chandler Carruth - Opening Keynote Meeting C++ 2015
演示稿:https://meetingcpp.com/tl_files/mcpp/2015/talks/meetingcxx_2015-understanding_compiler_optimization_themed_.pdf
錄像:https://www.youtube.com/watch?v=FnGCDLhaxKU(打不開請自備工具…)
Agner Fog寫的優化手冊也永遠是值得參考的文檔。其中的C++優化手冊:
Optimizing software in C++ - An optimization guide for Windows, linux and Mac platforms - Agner Fog
要稍微深入一點的話,GCC和LLVM的文檔其實都對各自的內部實現有不錯的介紹。
GCC:GNU Compiler Collection (GCC) Internals
LLVM:LLVM』s Analysis and Transform Passes
========================================
反模式(anti-patterns)
1. 為了「優化」而減少源碼中局部變數的個數
這可能是最沒用的手工「優化」了。特別是遇到在高級語言中「不用臨時變數來交換兩個變數」這種場景的時候。
看另一個問題有感:有什麼像a=a+b;b=a-b;a=a-b;這樣的演算法或者知識? - 編程
2. 為了「優化」而把應該傳值的參數改為傳引用
(待續…)
【以下解答】
推薦讀一讀這里的幾個文檔:
Software optimization resources. C++ and assembly. Windows, Linux, BSD, Mac OS X
其中第一篇:http://www.agner.org/optimize/optimizing_cpp.pdf
講解了C++不同領域的優化思路和問題,還有編譯器做了哪些優化,以及如何代碼配合編譯器優化。還有優化多線程、使用向量指令等的介紹,推薦看看。
感覺比較符合你的部分需求。
【以下解答】
一份比較老的slides:
http://www.fefe.de/source-code-optimization.pdf
【以下解答】
利用C++11的range-based for loop語法可以實現類似python里的range生成器,也就是實現一個range對象,使得
for(auto i : range(start, stop, step))
【以下解答】
我覺得都不用現代。。。。寄存器分配和指令調度最智能了
【以下解答】
每次編譯poco庫的時候我都覺得很為難GCC
【以下解答】
有些智能並不能保證代碼變換前後語義是等價的
【以下解答】
誒誒,我錯了各位,GCC是可以藉助 SSE 的 xmm 寄存器進行優化的,經 @RednaxelaFX 才知道應該添加 -march=native 選項。我以前不了解 -march 選項,去研究下再來補充為什麼加和不加區別這么大。
十分抱歉黑錯了。。。以後再找別的點來黑。
誤導大家了,實在抱歉。(??ˇ?ˇ??)
/*********以下是並不正確的原答案*********/
我是來黑 GCC的。
最近在搞編譯器相關的活,編譯OpenSSL的時候有一段這樣的代碼:
BN_ULONG a0,a1,a2,a3; // EmmetZC 註:BN_ULONG 其實就是 unsigned longa0=B[0]; a1=B[1]; a2=B[2]; a3=B[3];A[0]=a0; A[1]=a1; A[2]=a2; A[3]=a3;
【以下解答】
提示:找不到對象
【以下解答】
忍不住抖個機靈。
私以為正常寫代碼情況下編譯器就能優化,才叫智能編譯器。要程序員絞盡腦汁去考慮怎麼寫代碼能讓編譯器更好優化,甚至降低了可讀性,那就沒有起到透明屏蔽的作用。
智能編譯器應該是程序猿要較勁腦汁才能讓編譯器不優化。
理論上是這樣的。折疊我吧。
【以下解答】
編譯器智能到每次我都覺得自己很智障。
【以下解答】
雖然題主內容里是想問編譯器代碼性能優化方面的內容,但題目里既然說到編譯器的的智能,我就偏一下方向來說吧。
有什麼更能展示編譯器的強大和智能?
自然是c++的模版元編程
template meta programming
簡單解釋的話就是寫代碼的代碼,寫的還是c++,但能讓編譯器在編譯期間生成正常的c++代碼。
沒接觸過的話,是不是聽上去感覺就是宏替換的加強版?感覺不到它的強大呢?
只是簡單用的話,效果上這樣理解也沒什麼
但是一旦深入下去,尤其翻看大神寫的東西,這明明看著就是c++的代碼,但TM怎麼完全看不懂他在干什麼?後來才知道這其實完全是另外一個世界,可是明明是另外一個世界的東西但它又可以用來做很多正常c++能做的事....
什麼?你說它好像不能做這個,不能做那個,好像做不了太多東西,錯了,大錯特錯。就像你和高手考試都考了100分的故事一樣,雖然分數一樣,但你是努力努力再努力才得了滿分,而高手只是因為卷面分只有100分.....在元編程面前,只有想不到,沒有做不到。
再回頭看看其他答案,編譯器順手幫你求個和,丟棄下無用代碼,就已經被驚呼強大了,那模板元編程這種幾乎能在編譯期直接幫你「生成」包含復雜邏輯的c++代碼,甚至還能間接「執行」一些復雜邏輯,這樣的編譯器是不是算怪獸級的強大?
一個編譯器同時支持編譯語法相似但結果不同卻又關聯的兩種依賴語言,這個編譯器有多強大多智能?
寫的人思維都要轉換幾次,編譯器轉著圈嵌著套翻著番兒地編譯代碼的代碼也肯定是無比蛋疼的,你說它有多強大多智能?
一個代碼創造另外一個代碼,自己能按照相似的規則生成自己,是不是聽上去已經有人工智慧的發展趨勢了?
上帝說,要有光,於是有了光。
老子曰,一生二,二生三,三生萬物。
信c++,得永生!
===
FBI WARNING:模板元編程雖然很強大,但也有不少缺點,尤其對於大型項目,為了你以及身邊同事的身心健康,請務必適度且謹慎的使用。勿亂入坑,回頭是岸。
【以下解答】
c++11的auto自動類型推斷算么....
【以下解答】
智能到開不同級別的優化,程序行為會不同 2333
【以下解答】
這個取決於你的水平
⑦ gcc 和VC++有什麼區別呢,VC++編譯時用的編譯器 相當於gcc的是什麼東西
VC++是IDE,也就是集成開發環境,其中,包含,文本編輯器,代碼編譯器等開發工具鏈。
而gcc是C++編譯器,linux下專用的C,C++編譯器,它不是IDE。
gcc可以和VC+中包含的編譯器等同。
換句話說,linux下的C++開發,需要一系列工具,如,Netbeans,Atom等編輯器,再加上gcc編譯器。
而windows則一個VC++已經包含開發所需的全套工具。
VC++,准確來說,應該叫做Visual Studio,最新版本Visual Studio 2017最新版本已經支持跨平台開發了。
而gcc作為一款編譯器,也已經老去,目前流行LLVM。
⑧ 什麼是GCC編譯器
Linux系統下的Gcc(GNU C Compiler)是GNU推出的功能強大、性能優越的多平台編譯器,是GNU的代表作品之一。gcc是可以在多種硬體平台上編譯出可執行程序的超級編譯器,其執行效率與一般的編譯器相比平均效率要高20%~30%。
Gcc編譯器能將C、C++語言源程序、匯程式化序和目標程序編譯、連接成可執行文件,如果沒有給出可執行文件的名字,gcc將生成一個名為a.out的文件。在Linux系統中,可執行文件沒有統一的後綴,系統從文件的屬性來區分可執行文件和不可執行文件。而gcc則通過後綴來區別輸入文件的類別,下面我們來介紹gcc所遵循的部分約定規則。
.c為後綴的文件,C語言源代碼文件;
.a為後綴的文件,是由目標文件構成的檔案庫文件;
.C,.cc或.cxx 為後綴的文件,是C++源代碼文件;
.h為後綴的文件,是程序所包含的頭文件;
.i 為後綴的文件,是已經預處理過的C源代碼文件;
.ii為後綴的文件,是已經預處理過的C++源代碼文件;
.m為後綴的文件,是Objective-C源代碼文件;
.o為後綴的文件,是編譯後的目標文件;
.s為後綴的文件,是匯編語言源代碼文件;
.S為後綴的文件,是經過預編譯的匯編語言源代碼文件。
Gcc的執行過程
雖然我們稱Gcc是C語言的編譯器,但使用gcc由C語言源代碼文件生成可執行文件的過程不僅僅是編譯的過程,而是要經歷四個相互關聯的步驟∶預處理(也稱預編譯,Preprocessing)、編譯(Compilation)、匯編(Assembly)和連接(Linking)。
命令gcc首先調用cpp進行預處理,在預處理過程中,對源代碼文件中的文件包含(include)、預編譯語句(如宏定義define等)進行分析。接著調用cc1進行編譯,這個階段根據輸入文件生成以.o為後綴的目標文件。匯編過程是針對匯編語言的步驟,調用as進行工作,一般來講,.S為後綴的匯編語言源代碼文件和匯編、.s為後綴的匯編語言文件經過預編譯和匯編之後都生成以.o為後綴的目標文件。當所有的目標文件都生成之後,gcc就調用ld來完成最後的關鍵性工作,這個階段就是連接。在連接階段,所有的目標文件被安排在可執行程序中的恰當的位置,同時,該程序所調用到的庫函數也從各自所在的檔案庫中連到合適的地方。
Gcc的基本用法和選項
在使用Gcc編譯器的時候,我們必須給出一系列必要的調用參數和文件名稱。Gcc編譯器的調用參數大約有100多個,其中多數參數我們可能根本就用不到,這里只介紹其中最基本、最常用的參數。
Gcc最基本的用法是∶gcc [options] [filenames]
其中options就是編譯器所需要的參數,filenames給出相關的文件名稱。
-c,只編譯,不連接成為可執行文件,編譯器只是由輸入的.c等源代碼文件生成.o為後綴的目標文件,通常用於編譯不包含主程序的子程序文件。
-o output_filename,確定輸出文件的名稱為output_filename,同時這個名稱不能和源文件同名。如果不給出這個選項,gcc就給出預設的可執行文件a.out。
-g,產生符號調試工具(GNU的gdb)所必要的符號資訊,要想對源代碼進行調試,我們就必須加入這個選項。
-O,對程序進行優化編譯、連接,採用這個選項,整個源代碼會在編譯、連接過程中進行優化處理,這樣產生的可執行文件的執行效率可以提高,但是,編譯、連接的速度就相應地要慢一些。
-O2,比-O更好的優化編譯、連接,當然整個編譯、連接過程會更慢。
-Idirname,將dirname所指出的目錄加入到程序頭文件目錄列表中,是在預編譯過程中使用的參數。C程序中的頭文件包含兩種情況∶
A)#include
B)#include 「myinc.h」
其中,A類使用尖括弧(< >),B類使用雙引號(「 」)。對於A類,預處理程序cpp在系統預設包含文件目錄(如/usr/include)中搜尋相應的文件,而對於B類,cpp在當前目錄中搜尋頭文件,這個選項的作用是告訴cpp,如果在當前目錄中沒有找到需要的文件,就到指定的dirname目錄中去尋找。在程序設計中,如果我們需要的這種包含文件分別分布在不同的目錄中,就需要逐個使用-I選項給出搜索路徑。
-Ldirname,將dirname所指出的目錄加入到程序函數檔案庫文件的目錄列表中,是在連接過程中使用的參數。在預設狀態下,連接程序ld在系統的預設路徑中(如/usr/lib)尋找所需要的檔案庫文件,這個選項告訴連接程序,首先到-L指定的目錄中去尋找,然後到系統預設路徑中尋找,如果函數庫存放在多個目錄下,就需要依次使用這個選項,給出相應的存放目錄。
-lname,在連接時,裝載名字為「libname.a」的函數庫,該函數庫位於系統預設的目錄或者由-L選項確定的目錄下。例如,-lm表示連接名為「libm.a」的數學函數庫。
上面我們簡要介紹了gcc編譯器最常用的功能和主要參數選項,更為詳盡的資料可以參看Linux系統的聯機幫助。
假定我們有一個程序名為test.c的C語言源代碼文件,要生成一個可執行文件,最簡單的辦法就是∶
gcc test.c
這時,預編譯、編譯連接一次完成,生成一個系統預設的名為a.out的可執行文件,對於稍為復雜的情況,比如有多個源代碼文件、需要連接檔案庫或者有其他比較特別的要求,就要給定適當的調用選項參數。再看一個簡單的例子。
整個源代碼程序由兩個文件testmain.c 和testsub.c組成,程序中使用了系統提供的數學庫,同時希望給出的可執行文件為test,這時的編譯命令可以是∶
gcc testmain.c testsub.c □lm □o test
其中,-lm表示連接系統的數學庫libm.a。
Gcc的錯誤類型及對策
Gcc編譯器如果發現源程序中有錯誤,就無法繼續進行,也無法生成最終的可執行文件。為了便於修改,gcc給出錯誤資訊,我們必須對這些錯誤資訊逐個進行分析、處理,並修改相應的語言,才能保證源代碼的正確編譯連接。gcc給出的錯誤資訊一般可以分為四大類,下面我們分別討論其產生的原因和對策。
第一類∶C語法錯誤
錯誤資訊∶文件source.c中第n行有語法錯誤(syntex errror)。這種類型的錯誤,一般都是C語言的語法錯誤,應該仔細檢查源代碼文件中第n行及該行之前的程序,有時也需要對該文件所包含的頭文件進行檢查。有些情況下,一個很簡單的語法錯誤,gcc會給出一大堆錯誤,我們最主要的是要保持清醒的頭腦,不要被其嚇倒,必要的時候再參考一下C語言的基本教材。
第二類∶頭文件錯誤
錯誤資訊∶找不到頭文件head.h(Can not find include file head.h)。這類錯誤是源代碼文件中的包含頭文件有問題,可能的原因有頭文件名錯誤、指定的頭文件所在目錄名錯誤等,也可能是錯誤地使用了雙引號和尖括弧。
第三類∶檔案庫錯誤
錯誤資訊∶連接程序找不到所需的函數庫,例如∶
ld: -lm: No such file or directory
這類錯誤是與目標文件相連接的函數庫有錯誤,可能的原因是函數庫名錯誤、指定的函數庫所在目錄名稱錯誤等,檢查的方法是使用find命令在可能的目錄中尋找相應的函數庫名,確定檔案庫及目錄的名稱並修改程序中及編譯選項中的名稱。
第四類∶未定義符號
錯誤資訊∶有未定義的符號(Undefined symbol)。這類錯誤是在連接過程中出現的,可能有兩種原因∶一是使用者自己定義的函數或者全局變數所在源代碼文件,沒有被編譯、連接,或者乾脆還沒有定義,這需要使用者根據實際情況修改源程序,給出全局變數或者函數的定義體;二是未定義的符號是一個標準的庫函數,在源程序中使用了該庫函數,而連接過程中還沒有給定相應的函數庫的名稱,或者是該檔案庫的目錄名稱有問題,這時需要使用檔案庫維護命令ar檢查我們需要的庫函數到底位於哪一個函數庫中,確定之後,修改gcc連接選項中的-l和-L項。
排除編譯、連接過程中的錯誤,應該說這只是程序設計中最簡單、最基本的一個步驟,可以說只是開了個頭。這個過程中的錯誤,只是我們在使用C語言描述一個演算法中所產生的錯誤,是比較容易排除的。我們寫一個程序,到編譯、連接通過為止,應該說剛剛開始,程序在運行過程中所出現的問題,是演算法設計有問題,說得更玄點是對問題的認識和理解不夠,還需要更加深入地測試、調試和修改。一個程序,稍為復雜的程序,往往要經過多次的編譯、連接和測試、修改。下面我們學習的程序維護、調試工具和版本維護就是在程序調試、測試過程中使用的,用來解決調測階段所出現的問題。窗體頂端
窗體底端
⑨ c語言的編譯器是干什麼用的
高級語言、匯編語言、機器語言這三種語言統稱「計算機語言」。其中,機器語言是最低級的,是一串一串的電流表示「0001101010010110010101000110」之類的數據,全部由0和1組成,這樣的語言是機器語言,只有機器才能記住這樣冗長而沒規律的數據,所以,用機器語言來編程序幾乎是不可能的。但要命令機器做一樣事情,必須用機器語言,怎麼辦呢?於是,產生了匯編語言,匯編語言比機器語言簡單一點,但還是很難明白,當時的編譯器就是把匯編語言轉換成機器語言,再命令機器做事。現在,出現了高級語言,最人性化,人們很容易讀懂,所以,我們可以直接輸入自己熟悉的語言,到達機器的時候變成了機器最熟悉的語言,編程序就很容易了。編譯器擔負的就是這個轉換工作。